38 research outputs found

    Asymmetrical hybridization and gene flow between Eisenia andrei and E. fetida lumbricid earthworms

    Get PDF
    Uniformly pigmented Eisenia andrei (Ea) and striped E. fetida (Ef) lumbricid earthworms are hermaphrodites capable of self-fertilization, cross-fertilization, and asymmetrical hybridization. The latter was detected by genotyping of F1 and F2 progeny of the controlled Ea+Ef pairs by species-specific sequences of maternal mitochondrial COI genes and maternal/paternal nuclear S28 rRNA genes. Among F1offspring there were self-fertilized Ea (aAA), Ef (fFF), and cross-fertilized fertile Ea-derived hybrids (aAF); the latter mated with Ea and gave new generation of Ea and hybrids, while mated with Ef gave Ea, Ef, Ea-derived hybrids and sterile Ef-derived hybrids (fFA). Coelomic fluid of Ea exhibits unique fluorescence spectra called here the M-fluorescence considered as a molecular biomarker of this species. Since similar fluorescence was detected also in some Ef (hypothetical hybrids?), the aim of present investigations was to identify the M-positive earthworms among families genotyped previously. It was assumed that factor/s responsible for metabolic pathways leading to production of undefined yet M-fluorophore might be encoded/controlled by alleles of hypothetical nuclear gene of Eisenia sp. segregating independently from species-specific S28 rRNA nuclear genes, where 'MM' or 'Mm' alleles determine M-positivity while 'mm' alleles determine M-negative phenotypes. Spectra of M-fluorescence were detected in all 10 Ea (aAAMM) and 19 Ea-derived hybrids (aAFMm), three of four Ef-derived hybrids (fFAMm) and one 'atypical' Ef (fFFMm) among 13 Ef earthworms. Among progeny of 'atypical' M-positive Ef (fFFMm) reappeared 'typical' M-negative Ef (fFFmm), confirming such hypothesis. Alternatively, the M-fluorescence might be dependent on unknown gene products of vertically-transmitted Ea-specific symbiotic bacteria sexually transferred to the Ef partner. Hypotheses of intrinsic and external origin of M-fluorescence might complement each other. The presence/absence of M-fluorophore does not correspond with body pigmentation patterns; Ef-characteristic banding appeared in posterior parts of hybrids body. In conclusion, Ea/Ef hybridization may serve for further studies on bi-directional gene flow

    Impairment of reproductive capabilities in three subsequent generations of asymmetric hybrids between Eisenia andrei and E. fetida from French, Hungarian and Polish laboratory colonies

    Get PDF
    Eisenia andrei (Ea) and E. fetida (Ef) lumbricid earthworms are simultaneous hermaphrodites potentially capable of self-fertilization and hybridization. We have shown previously that reproductive isolation in these species is incomplete in Ea and Ef earthworms of French provenance, as viable offspring appeared in inter-specific pairs. Fertile asymmetric hybrids developed from Ea-derived ova fertilized by Ef-derived spermatozoa, as well as Ea or Ef specimens derived after self-fertilization (resulting from admixture of endogenously produced spermatozoa with sperm from a partner), but never Ef-hybrids from Ef-ova fertilized by Ea-spermatozoa. The latter appeared only in backcrosses of Ea-hybrids with the Ef. Here we show that these phenomena are not unique for French Ea/Ef earthworms, but are shared by earthworms from French, Hungarian, and Polish laboratory cultures. Semi-quantitative studies on fertility of Ea-derived hybrids revealed gradually decreasing numbers of offspring in three successive generations, more rapid in backcrosses with Ef than with Ea, and the absence of progeny in pairs of hybrids, despite the presence of cocoons in almost all pairs. Based on species specific mitochondrial and nuclear DNA sequences, we provide the first examples of two unique sterile hybrids with mitonuclear mismatch and potential mitonuclear incompatibility among offspring of one of the hybrid+Ef pairs. Earthworms from the investigated populations did not reproduce when kept from hatching in isolation or with representatives of Dendrobaena veneta but started reproducing upon recognition of a related partner, such as Ea, Ef or their hybrids. The existence of Ea or Ef specimens among offspring of hybrid+Ea/Ef pairs might be explained either by partner-induced self-fertilization of Ea/Ef or hybrid-derived ova, or by cross-fertilization of Ea/Ef /hybrid ova by partner-derived spermatozoa; the latter might contribute to interspecific gene introgression

    The existence of fertile hybrids of closely related model earthworm species, Eisenia andrei and E. fetida

    Get PDF
    Lumbricid earthworms Eisenia andrei (Ea) and E. fetida (Ef) are simultaneous hermaphrodites with reciprocal insemination capable of self-fertilization while the existence of hybridization of these two species was still debatable. During the present investigation fertile hybrids of Ea and Ef were detected. Virgin specimens of Ea and Ef were laboratory crossed (Ea+Ef) and their progeny was doubly identified. 1 -identified by species-specific maternally derived haploid mitochondrial DNA sequences of the COI gene being either 'a' for worms hatched from Ea ova or 'f' for worms hatched from Ef ova. 2 -identified by the diploid maternal/paternal nuclear DNA sequences of 28s rRNA gene being either 'AA' for Ea, 'FF' for Ef, or AF/FA for their hybrids derived either from the 'aA' or 'fF' ova, respectively. Among offspring of Ea+Ef pairs in F1 generation there were mainly aAA and fFF earthworms resulted from the facilitated self-fertilization and some aAF hybrids from aA ova but none fFA hybrids from fF ova. In F2 generation resulting from aAF hybrids mated with aAA a new generations of aAA and aAF hybrids were noticed, while aAF hybrids mated with fFF gave fFF and both aAF and fFA hybrids. Hybrids intercrossed together produced plenty of cocoons but no hatchlings independently whether aAF+aAF or aAF+fFA were mated. These results indicated that Ea and Ef species, easy to maintain in laboratory and commonly used as convenient models in biomedicine and ecotoxicology, may also serve in studies on molecular basis of interspecific barriers and mechanisms of introgression and speciation. Hypothetically, their asymmetrical hybridization can be modified by some external factors

    Effect of Potassium Sulfate on the Dehydration of Orthophosphates

    No full text

    Anticorrosive and physicochemical properties of modified phosphate pigments

    No full text
    Many studies have been carried out in the direction of improvement of the effectiveness of commonly utilized phosphate corrosion inhibitors. For this purpose various types of modifications are realized, e.g. introduction of different cations to the pigment composition or replacement of phosphate anions with others. In the presented work, anticorrosive pigments containing calcium hydrogen phosphate, and/or calcium hydroxyphosphate, and calcium molybdate were obtained. The phase and chemical composition and the oil absorption number of those materials were determined. The anticorrosive properties were investigated by an electrochemical noise method. The obtained results were compared with previously published studies concerning pigments containing (NH4)3Al2(PO4)3 and/or AlPO4, and CaMoO4. It was found that the pigment containing only calcium molybdate(VI) is not an effective corrosion inhibitor. However, the pigments comprising a mixture of CaHPO4 and CaMoO4 exhibited good anticorrosive properties and they were characterized by higher effectiveness in the corrosion protection than compared materials

    Anticorrosive and physicochemical properties of modified phosphate pigments

    No full text
    Many studies have been carried out in the direction of improvement of the effectiveness of commonly utilized phosphate corrosion inhibitors. For this purpose various types of modifications are realized, e.g. introduction of different cations to the pigment composition or replacement of phosphate anions with others. In the presented work, anticorrosive pigments containing calcium hydrogen phosphate, and/or calcium hydroxyphosphate, and calcium molybdate were obtained. The phase and chemical composition and the oil absorption number of those materials were determined. The anticorrosive properties were investigated by an electrochemical noise method. The obtained results were compared with previously published studies concerning pigments containing (NH4)3Al2(PO4)3 and/or AlPO4, and CaMoO4. It was found that the pigment containing only calcium molybdate(VI) is not an effective corrosion inhibitor. However, the pigments comprising a mixture of CaHPO4 and CaMoO4 exhibited good anticorrosive properties and they were characterized by higher effectiveness in the corrosion protection than compared materials

    Polymorphic microsatellite markers demonstrate hybridization and interspecific gene flow between lumbricid earthworm species, Eisenia andrei and E. fetida

    Get PDF
    The lumbricid earthworms Eisenia andrei (Ea) and E. fetida (Ef) have been used as model organisms for studies on hybridization. Previously they have been identified by species specific sequences of the mitochondrial COI gene of maternal origin (‘a’ or ‘f’) and the nuclear 28S gene of maternal/paternal origin (‘A’ or ‘F’). In experimental crosses, these hermaphroditic species produce progeny of genotypes Ea (aAA), Ef (fFF) and hybrids (aAF and fFA) originating by self-fertilization or cross-fertilization. To facilitate studies on new aspects of the breeding biology and hybridization of earthworms, polymorphic microsatellite markers were developed based on 12 Ea and 12 Ef specimens and validated on DNA samples extracted from 24 genotyped specimens (aAA, fFF, aAF and fFA) from three laboratory-raised families and 10 of them were applied in the present study. The results indicate that microsatellite markers are valuable tools for tracking interspecific gene flow between these species
    corecore