294 research outputs found

    Distributionally robust stability of payoff allocations in stochastic coalitional games

    Full text link
    We consider multi-agent coalitional games with uncertainty in the coalitional values. We provide a novel methodology to study the stability of the grand coalition in the case where each coalition constructs ambiguity sets for the (possibly) unknown probability distribution of the uncertainty. As a less conservative solution concept compared to worst-case approaches for coalitional stability, we consider a stochastic version of the so-called core set, i.e., the expected value core. Unfortunately, without exact knowledge of the probability distribution, the evaluation of the expected value core is an extremely challenging task. Hence, we propose the concept of distributionaly robust (DR) core. Leveraging tools from data-driven DR optimization under the Wasserstein distance, we provide finite-sample guarantees that any allocation which lies in the DR core is also stable with respect to the true probability distribution. Furthermore, we show that as the number of samples grows unbounded, the DR core converges almost surely to the true expected value core. We dedicate the last section to the computational tractability of finding an allocation in the DR core.Comment: Accepted for publication at the IEEE Conference on Decision and Control 202

    A relaxed-inertial forward-backward-forward algorithm for Stochastic Generalized Nash equilibrium seeking

    Full text link
    In this paper we propose a new operator splitting algorithm for distributed Nash equilibrium seeking under stochastic uncertainty, featuring relaxation and inertial effects. Our work is inspired by recent deterministic operator splitting methods, designed for solving structured monotone inclusion problems. The algorithm is derived from a forward-backward-forward scheme for solving structured monotone inclusion problems featuring a Lipschitz continuous and monotone game operator. To the best of our knowledge, this is the first distributed (generalized) Nash equilibrium seeking algorithm featuring acceleration techniques in stochastic Nash games without assuming cocoercivity. Numerical examples illustrate the effect of inertia and relaxation on the performance of our proposed algorithm

    Prenatal diagnosis and post-mortem examination in a fetus with thrombocytopenia-absent radius (TAR) syndrome due to compound heterozygosity for a 1q21.1 microdeletion and a RBM8A hypomorphic allele: a case report

    Get PDF
    Background: Thrombocytopenia-absent radius syndrome is a rare autosomal recessive disorder characterized by megakaryocytic thrombocytopenia and longitudinal limb deficiencies mostly affecting the radial ray. Most patients are compound heterozygotes for a 200 kb interstitial microdeletion in 1q21.1 and a hypomorphic allele in RBM8A, mapping in the deleted segment. At the moment, the complete molecular characterization of thrombocytopenia-absent radius syndrome is limited to a handful of patients mostly ascertained in the pediatric age. Case presentation. We report on a fetus with bilateral upper limb deficiency found at standard prenatal ultrasound examination. The fetus had bilateral radial agenesis and humeral hypo/aplasia with intact thumbs, micrognathia and urinary anomalies, indicating thrombocytopenia-absent radius syndrome. Molecular studies demonstrated compound heterozygosity for the 1q21.1 microdeletion and the RBM8A rs139428292 variant at the hemizygous state, inherited from the mother and father, respectively. Conclusion: The molecular information allowed prenatal diagnosis in the following pregnancy resulting in the birth of a healthy carrier female. A review was carried out with the attempt to the trace the fetal ultrasound presentation of thrombocytopenia-absent radius syndrome and discussing opportunities for second-tier molecular studies within a multidisciplinary setting. © 2013 Bottillo et al.; licensee BioMed Central Ltd

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages
    corecore