15 research outputs found

    Comparison of CT, PET, and PET/CT for Staging of Patients with Indolent Non-Hodgkin’s Lymphoma

    Get PDF
    The aim was to investigate the potential impact of positron emission tomography (PET)/computed tomography (CT) as compared to PET and CT on the staging of patients with indolent lymphoma. PET/CTs from 45 patients with indolent lymphoma undergoing staging or restaging were studied. Clinical follow-up, additional imaging, and histology served as the gold standard. PET/CT correctly diagnosed 92 nodal regions as positive for lymphomatous involvement and 458 as disease free vs 68 and 449 for PET and 64 and 459 for CT, respectively. The respective sensitivities, specificities, and accuracies were 99%, 100%, and 99.8% for PET/CT, 68%, 97.5%, and 92.2% for PET, and 70%, 100%, and 94.7% for CT. PET/CT performed significantly better than PET (p < 0.001 for sensitivity, specificity, and accuracy) and CT (p < 0.001 for sensitivity and accuracy). PET/CT also correctly identified significantly more extra-nodal lesions (22) than CT (14) and PET (nine). PET/CT provides significantly more accurate information compared to PET and CT for the staging and re-staging of patients with indolent lymphoma

    Human biodistribution and radiation dosimetry of novel PET probes targeting the deoxyribonucleoside salvage pathway

    Get PDF
    PurposeDeoxycytidine kinase (dCK) is a rate-limiting enzyme in deoxyribonucleoside salvage, a metabolic pathway involved in the production and maintenance of a balanced pool of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis. dCK phosphorylates and therefore activates nucleoside analogs such as cytarabine, gemcitabine, decitabine, cladribine, and clofarabine that are used routinely in cancer therapy. Imaging probes that target dCK might allow stratifying patients into likely responders and nonresponders with dCK-dependent prodrugs. Here we present the biodistribution and radiation dosimetry of three fluorinated dCK substrates, (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC, developed for positron emission tomography (PET) imaging of dCK activity in vivo.MethodsPET studies were performed in nine healthy human volunteers, three for each probe. After a transmission scan, the radiopharmaceutical was injected intravenously and three sequential emission scans acquired from the base of the skull to mid-thigh. Regions of interest encompassing visible organs were drawn on the first PET scan and copied to the subsequent scans. Activity in target organs was determined and absorbed dose estimated with OLINDA/EXM. The standardized uptake value was calculated for various organs at different times.ResultsRenal excretion was common to all three probes. Bone marrow had higher uptake for L: -(18)F-FAC and L: -(18)F-FMAC than (18)F-FAC. Prominent liver uptake was seen in L: -(18)F-FMAC and L: -(18)F-FAC, whereas splenic activity was highest for (18)F-FAC. Muscle uptake was also highest for (18)F-FAC. The critical organ was the bladder wall for all three probes. The effective dose was 0.00524, 0.00755, and 0.00910 mSv/MBq for (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC, respectively.ConclusionThe biodistribution of (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC in humans reveals similarities and differences. Differences may be explained by different probe affinities for nucleoside transporters, dCK, and catabolic enzymes such as cytidine deaminase (CDA). Dosimetry demonstrates that all three probes can be used safely to image the deoxyribonucleoside salvage pathway in humans

    Assessing the kidney function parameters glomerular filtration rate and effective renal plasma flow with dynamic FDG-PET/MRI in healthy subjects

    No full text
    Abstract Background A method was developed to assess the kidney parameters glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) from 2-deoxy-2-[18F]fluoro-d-glucose (FDG) concentration behavior in kidneys, measured with positron emission tomography (PET) scans. Twenty-four healthy adult subjects prospectively underwent dynamic simultaneous PET/magnetic resonance imaging (MRI) examination. Time activity curves (TACs) were obtained from the dynamic PET series, with the guidance of MR information. Patlak analysis was performed to determine the GFR, and based on integrals, ERPF was calculated. Results were compared to intra-individually obtained reference values determined from venous blood samples. Results Total kidney GFR and ERPF as estimated by dynamic PET/MRI were highly correlated to their reference values (r = 0.88/p < 0.0001 and r = 0.82/p < 0.0001, respectively) with no significant difference between their means. Conclusions The study is a proof of concept that GFR and ERPF can be assessed with dynamic FDG PET/MRI scans in healthy kidneys. This has advantages for patients getting a routine scan, where additional examinations for kidney function estimation could be avoided. Further studies are required for transferring this PET/MRI method to PET/CT applications

    Assessment of the kidney function parameters split function, mean transit time, and outflow efficiency using dynamic FDG-PET/MRI in healthy subjects

    No full text
    Abstract Background Traditionally, isotope nephrography is considered as the method of choice to assess kidney function parameters in nuclear medicine. We propose a novel approach to determine the split function (SF), mean transit time (MTT), and outflow efficiency (OE) with 2-deoxy-2-[18F]fluoro-D-glucose (FDG) dynamic positron emission tomography (PET). Materials and methods Healthy adult subjects underwent dynamic simultaneous FDG-PET and magnetic resonance imaging (PET/MRI). Time-activity curves (TACs) of total kidneys, renal cortices, and the aorta were prospectively obtained from dynamic PET series. MRI images were used for anatomical correlation. The same individuals were subjected to dynamic renal Technetium-99 m-mercaptoacetyltriglycine (MAG3) scintigraphy and TACs of kidneys; the perirenal background and the left ventricle were determined. SF was calculated on the basis of integrals over the TACs, MTT was determined from renal retention functions after deconvolution analysis, and OE was determined from MTT. Values obtained from PET series were compared with scintigraphic parameters, which served as the reference. Results Twenty-four subjects underwent both examinations. Total kidney SF, MTT, and OE as estimated by dynamic PET/MRI correlated to their reference values by r = 0.75, r = 0.74 and r = 0.81, respectively, with significant difference (p < 0.0001) between the means of MTT and OE. No correlations were found for cortex FDG values. Conclusions The study proofs the concept that SF, MTT, and OE can be estimated with dynamic FDG PET/MRI scans in healthy kidneys. This has advantages for patients receiving a routine PET/MRI scan, as kidney parameters can be estimated simultaneously to functional and morphological imaging with high accuracy

    The prognostic value of [123I]-vascular endothelial growth factor ([123I]-VEGF) in glioma

    No full text
    Purpose Recent studies have shown that tumor vascular endothelial cells and various tumor cells overexpress receptors for vascular endothelial growth factor (VEGF). The aim of this study was to investigate the prognostic value of [123I]-VEGF scintigraphy in patients with histologically verified brain tumors. Methods 23 consecutive patients (9 women and 14 men aged 3083 years, mean age 56.6 14.4 years) with histopathologically-verified primary brain tumors were included in the study. All patients had undergone [123I]-VEGF scintigraphy. SPECT examinations of brain were performed 30 min and 18 h after injection. Additional [11C]-methionine PET ([11C]-MET PET) was performed in eight of the 23 patients. Both [123I]-VEGF and [11C]-MET PET were evaluated visually and semiquantitatively by tumor-to-normal brain uptake ratio (T/N ratio). Thresholds of the T/N ratio were evaluated by analysis of receiver operating characteristics (ROC). Overall survival (OS) was estimated using the Kaplan-Meier method. Results World Health Organization (WHO) grade IV glioma lesions showed [123I]-VEGF uptake 18 h after the injection, whereas other brain tumors of grade II or III showed negative results. There was no significant difference in the tumor size between VEGF positive and VEGF negative tumors. Patients with [123I]-VEGF T/N ratio threshold <1.32 showed significantly longer survival than patients with T/N ratio 1.32 (2680 days vs 295 days; P < 0.05). In the subgroup of 16 grade IV glioma patients, significant OS differences were found using a T/N ratio of 1.75 as threshold (T/N ratio < 1.75: 720 days; T/N 1.75: 183 days; P < 0.05). Significant difference (P < 0.05) was also found in [11C]-MET PET T/N ratios between the grade IV glioma (mean T/N ratio: 3.71) and the grade II or III glioma (mean T/N ratio: 1.74). Conclusion Our results suggest that [123I]-VEGF scintigraphy may be useful for visualization of tumor angiogenesis. In addition, [123I]-VEGF may provide relevant prognostic information in patients with glioma.(VLID)360160
    corecore