11 research outputs found

    The forewing of the Aphis fabae (Scopoli 1763) (Hemiptera, Sternorrhyncha): a morphological and histological study

    Get PDF
    Dorsal and ventral sides of the forewing of Aphis fabae (Scopoli 1763) (Sternorrhyncha, Hemiptera) were examined by scanning electron microscopy. Reinforcement elements on their surface as well as scale-like elements were described. Using histological methods, cross-sections of the material were done. They showed a two-layered membrane with a circular foramen inside. The course of veins and places of their bifurcation were followed. Common stem of radius (R), media (M), and cubitus anterior (CuA) veins were composed of separate tracheae, which ran separately at the beginning, then continued in a single tunnel, and finally disappeared. Nerves were not observed. Neither were tracheae visible on the further course of those veins. The presence of a devoid-of-trachea costal vein was confirmed. Under scanning electron microscope, convex reinforcements on dorsal side of the wing turned out to be more sclerotized parts of chitin, not giving a zigzag-like profile of the wing on sections. In this paper, we show for the first time a cross-section of a very delicate wing of an aphid representative

    Morphological and histological study of the forewing of Aleyrodes proletella (Linnaeus 1758) (Sternorrhyncha, Hemiptera) with a comparative analysis of forewings among Sternorrhyncha infraorders

    Get PDF
    Identification of whiteflies is based mainly on larval stages and generally very little is known about wings of these insects. Therefore, both sides of the forewings of Aleyrodes proletella were studied using histological methods, light and scanning electron microscopes. Studies confirm the occurrence of only three veins on forewings: the costal, radial and anal ones; only the anal vein lies under the anal fold. A campaniform and trichoid sensilla are present. The shape of wax secretions and wing margins is described. The comparative analysis of forewing structures contains new data for all Sternorrhyncha infraorders. The current results confirm the monophyly of the group, but place aphids closer to psyllids. The analysis of forewing base indicates that its general model is similar among Sternorrhyncha, but there occur some intergroup differences. Ways of wing folding depend on the structure of thorax

    Revised concept of the fossil genus Oviparosiphum Shaposhnikov, 1979 with the description of a new genus (Hemiptera, Sternorrhyncha,Aphidomorpha)

    Get PDF
    This paper presents a revision of the aphid genus Oviparosiphum, which is known from the Cretaceous period. Redescriptions of two species: O. jakovlevi Shaposhnikov, 1979 and O. baissense Shaposhnikov & Wegierek, 1989 are made, and an updated diagnosis of this genus is provided. Oviparosiphum baissense is the type species of a newly described genus Archeoviparosiphum gen. n. Five other species of Oviparosiphum are also transferred to the new genus. The basis for their separation from Oviparosiphum is the structure of the siphunculi and ovipositor. A key is provided to the genera of Oviparosiphidae

    Is there a relationship between the morphology of the forewing axillary sclerites and the way the wing folds in aphids (Aphidomorpha, Sternorrhyncha, Hemiptera)?

    Get PDF
    The present study describes the relationship between the morphology of the forewing axillary sclerites and the way the wings fold among 24 aphid genera as compared to a representative of coccids. Architecture of the forewing base was imaged with scanning electron and optical (fluorescence) microscopy. Significant differences in morphology of axillary sclerites between aphid species were observed, despite their belonging to one infraorder. Detailed description of 41 features of axillary sclerites was made. There was no difference between axillaries of viviparous (Aphididae) and oviparous (Adelges sp., Phylloxera sp.) species. No clear relationship between morphology of the axillary sclerites and the wing folding could be confirmed. Instead, the thorax structure determines the way the wing folds in aphids. Phylogenetic analysis based on our results cannot be conducted at this stage of study. To show how three-dimensional the structures are and how difficult to describe, a short animation of Aphis fabae (Aphididae) wing base was added. This is a preliminary study about morphology of axillary sclerites among aphids

    Comparative morphology of the forewing base articulationin Sternorrhyncha compared with a representative of Fulgoromorpha (Insecta, Hemiptera)

    Get PDF
    The forewing articulation of single species from each of the four subgroups of Sternorrhyncha (Aleyrodomorpha, Aphidomorpha, Coccomorpha, Psyllomorpha) was examined by optical and scanning electron microscopy. The species were compared with a species of Cixiidae (Fulgoromorpha), as an outgroup of Sternorrhyncha. We present the results of a comparative analysis of the forewing articulation in these five groups, propose a standardized terminology and compare our findings with those previously reported. The wing base of all examined species is composed of the following structures: anterior and posterior notal wing process, first, second, and third axillary sclerites, tegula, and axillary cord. The number of elements included in the wing base and the surrounding area is the greatest in Cacopsylla mali, the most complicated species from Sternorrhyncha. Based on the shape of axillary sclerites and the number of elements forming the wing base environment, Orthezia urticae (Coccomorpha) and Cixius nervosus (Fulgoromorpha) are the most similar. Among Sternorrhyncha, the most similar axillaries are those of Aphis fabae and Orthezia urticae, which is congruent with existing classifications. In this paper we show that the four groups from Sternorrhyncha exhibit their own distinct wing base morphology

    Morphological and histological study of the forewing of Orthezia urticae (Linnaeus, 1758) (Hemiptera, Sternorrhyncha)

    Get PDF
    Wings of Orthezia urticae males were studied. Both ventral and dorsal surfaces of wings were examined under light and scanning electron microscopes. The structure regarded as vein cubitus anterior turned out to be a reinforcement element only. Two elements known as radius sector and media are almost transparent depressions in the wing membrane. Veins at the margin of the fold of the wing anal lobe were not confirmed. Studies indicated a row of sensilla cupola at the beginning of the subcostal ridge. Cross sections of the wing membrane showed a two-layered membrane. The presence of two veins was confirmed in a common stem – subcostal and radius. The change of common stem shape was described. Neither tracheae nor nerves were observed. This is the second paper on cross-sections of wing within Sternorrhyncha
    corecore