155 research outputs found

    β-Cell Failure or β-Cell Abuse?

    Get PDF
    This review is motivated by the need to question dogma that has not yielded significant improvements in outcomes of Type 2 Diabetes treatment: that insulin resistance is the driver of ß-Cell failure and resulting hyperglycemia. We highlight the fact that hyperlipidemia, insulin resistance, and hyperinsulinemia all precede overt diabetes diagnosis and can each induce the other when tested experimentally. New research highlights the importance of high levels of circulating insulin as both a driver of weight gain and insulin resistance. Data from our lab and others document that several nutrients and environmental toxins can stimulate insulin secretion at non-stimulatory glucose in the absence of insulin resistance. This occurs either by direct action on the ß-Cell or by shifting its sensitivity to known secretagogues. We raise the next logical question of whether ß-Cell dysfunction in Type 2 Diabetes is due to impaired function, defined as failure, or if chronic overstimulation of the ß-Cell that exceeds its capacity to synthesize and secrete insulin, defined as abuse, is the main abnormality in Type 2 Diabetes. These questions are important as they have direct implications for how to best prevent and treat Type 2 Diabetes

    Reactive Oxygen Species Stimulate Insulin Secretion in Rat Pancreatic Islets: Studies Using Mono-Oleoyl-Glycerol

    Get PDF
    Chronic exposure (24–72 hrs) of pancreatic islets to elevated glucose and fatty acid leads to glucolipoxicity characterized by basal insulin hypersecretion and impaired glucose-stimulated insulin secretion (GSIS). Our aim was to determine the mechanism for basal hypersecretion of insulin. We used mono-oleoyl-glycerol (MOG) as a tool to rapidly increase lipids in isolated rat pancreatic ß-cells and in the clonal pancreatic ß-cell line INS-1 832/13. MOG (25–400 µM) stimulated basal insulin secretion from ß-cells in a concentration dependent manner without increasing intracellular Ca2+ or O2 consumption. Like GSIS, MOG increased NAD(P)H and reactive oxygen species (ROS). The mitochondrial reductant ß-hydroxybutyrate (ß-OHB) also increased the redox state and ROS production, while ROS scavengers abrogated secretion. Diazoxide (0.4 mM) did not prevent the stimulatory effect of MOG, confirming that the effect was independent of the KATP-dependent pathway of secretion. MOG was metabolized to glycerol and long-chain acyl-CoA (LC-CoA), whereas, acute oleate did not similarly increase LC-CoA. Inhibition of diacylglycerol kinase (DGK) did not mimic the effect of MOG on insulin secretion, indicating that MOG did not act primarily by inhibiting DGK. Inhibition of acyl-CoA synthetase (ACS) reduced the stimulatory effect of MOG on basal insulin secretion by 30% indicating a role for LC-CoA. These data suggest that basal insulin secretion is stimulated by increased ROS production, due to an increase in the mitochondrial redox state independent of the established components of GSIS

    Reactive Oxygen Species Stimulate Insulin Secretion in Rat Pancreatic Islets: Studies Using Mono-Oleoyl-Glycerol

    Get PDF
    Chronic exposure (24–72 hrs) of pancreatic islets to elevated glucose and fatty acid leads to glucolipoxicity characterized by basal insulin hypersecretion and impaired glucose-stimulated insulin secretion (GSIS). Our aim was to determine the mechanism for basal hypersecretion of insulin. We used mono-oleoyl-glycerol (MOG) as a tool to rapidly increase lipids in isolated rat pancreatic ß-cells and in the clonal pancreatic ß-cell line INS-1 832/13. MOG (25–400 µM) stimulated basal insulin secretion from ß-cells in a concentration dependent manner without increasing intracellular Ca2+ or O2 consumption. Like GSIS, MOG increased NAD(P)H and reactive oxygen species (ROS). The mitochondrial reductant ß-hydroxybutyrate (ß-OHB) also increased the redox state and ROS production, while ROS scavengers abrogated secretion. Diazoxide (0.4 mM) did not prevent the stimulatory effect of MOG, confirming that the effect was independent of the KATP-dependent pathway of secretion. MOG was metabolized to glycerol and long-chain acyl-CoA (LC-CoA), whereas, acute oleate did not similarly increase LC-CoA. Inhibition of diacylglycerol kinase (DGK) did not mimic the effect of MOG on insulin secretion, indicating that MOG did not act primarily by inhibiting DGK. Inhibition of acyl-CoA synthetase (ACS) reduced the stimulatory effect of MOG on basal insulin secretion by 30% indicating a role for LC-CoA. These data suggest that basal insulin secretion is stimulated by increased ROS production, due to an increase in the mitochondrial redox state independent of the established components of GSIS

    Type 1 Diabetes Alters Lipid Handling and Metabolism in Human Fibroblasts and Peripheral Blood Mononuclear Cells

    Get PDF
    Triggers of the autoimmune response that leads to type 1 diabetes (T1D) remain poorly understood. A possibility is that parallel changes in both T cells and target cells provoke autoimmune attack. We previously documented greater Ca2+ transients in fibroblasts from T1D subjects than non-T1D after exposure to fatty acids (FA) and tumor necrosis factor α (TNFα). These data indicate that metabolic and signal transduction defects present in T1D can be elicited ex vivo in isolated cells. Changes that precede T1D, including inflammation, may activate atypical responses in people that are genetically predisposed to T1D. To identify such cellular differences in T1D, we quantified a panel of metabolic responses in fibroblasts and peripheral blood cells (PBMCs) from age-matched T1D and non-T1D subjects, as models for non-immune and immune cells, respectively. Fibroblasts from T1D subjects accumulated more lipid, had higher LC-CoA levels and converted more FA to CO2, with less mitochondrial proton leak in response to oleate alone or with TNFα, using the latter as a model of inflammation. T1D-PBMCs contained and also accumulated more lipid following FA exposure. In addition, they formed more peroxidized lipid than controls following FA exposure. We conclude that both immune and non-immune cells in T1D subjects differ from controls in terms of responses to FA and TNFα. Our results suggest a differential sensitivity to inflammatory insults and FA that may precede and contribute to T1D by priming both immune cells and their targets for autoimmune reactions

    Temporal Profiling of the Secretome during Adipogenesis in Humans

    Get PDF
    Adipose tissue plays a key role as a fat-storage depot and as an endocrine organ. Although mouse adipogenesis has been studied extensively, limited studies have been conducted to characterize this process in humans. We carried out a temporal proteomic analysis to interrogate the dynamic changes in the secretome of primary human preadipocytes as they differentiate into mature adipocytes. Using iTRAQ-based quantitative proteomics, we identified and quantified 420 proteins from the secretome of differentiated human adipocytes. Our results revealed that the majority of proteins showed differential expression during the course of differentiation. In addition to adipokines known to be differentially secreted in the course of adipocyte differentiation, we identified a number of proteins whose dynamic expression in this process has not been previously documented. They include collagen triple helix repeat containing 1, cytokine receptor-like factor 1, glypican-1, hepatoma-derived growth factor, SPARC related modular calcium binding protein 1, SPOCK 1, and sushi repeat-containing protein. A bioinformatics analysis using Human Protein Reference Database and Human Proteinpedia revealed that of the 420 proteins identified, 164 proteins possess signal peptides and 148 proteins are localized to the extracellular compartment. Additionally, we employed antibody arrays to quantify changes in the levels of 182 adipokines during human adipogenesis. This is the first large-scale quantitative proteomic stud

    Metabolomics-guided insights on bariatric surgery versus behavioral interventions for weight loss.

    Full text link
    Despite evidence to support their utility, lifestyle-based strategies for weight loss and treatment of obesity (i.e., based on diet and physical activity) have met so far with little success in the long term in terms of permanent weight loss (1). Bariatric surgery is the only current treatment for obesity leading to sustained weight loss (2) and to improvements in glucose regulation, up to a complet

    Identification of the signals for glucose-induced insulin secretion in INS1 (832/13) -cells using metformin-induced metabolic deceleration as a model

    Get PDF
    Metabolic deceleration in pancreatic -cells is associated with inhibition of glucose-induced insulin secretion (GIIS), but only in the presence of intermediate/submaximal glucose concentrations. Here, we used acute metformin treatment as a tool to induce metabolic deceleration in INS1 (832/13) -cells, with the goal of identifying key pathways and metabolites involved in GIIS. Metabolites and pathways previously implicated as signals for GIIS were measured in the cells at 2-25 mm glucose, with or without 5 mm metformin. We defined three criteria to identify candidate signals: 1) glucose-responsiveness, 2) sensitivity to metformin-induced inhibition of the glucose effect at intermediate glucose concentrations, and 3) alleviation of metformin inhibition by elevated glucose concentrations. Despite the lack of recovery from metformin-induced impairment of mitochondrial energy metabolism (glucose oxidation, O-2 consumption, and ATP production), insulin secretion was almost completely restored at elevated glucose concentrations. Meeting the criteria for candidates involved in promoting GIIS were the following metabolic indicators and metabolites: cytosolic NAD(+)/NADH ratio (inferred from the dihydroxyacetone phosphate:glycerol-3-phosphate ratio), mitochondrial membrane potential, ADP, Ca2+, 1-monoacylglycerol, diacylglycerol, malonyl-CoA, and HMG-CoA. On the contrary, most of the purine and nicotinamide nucleotides, acetoacetyl-CoA, H2O2, reduced glutathione, and 2-monoacylglycerol were not glucose-responsive. Overall these results underscore the significance of mitochondrial energy metabolism-independent signals in GIIS regulation; in particular, the candidate lipid signaling molecules 1-monoacylglycerol, diacylglycerol, and malonyl-CoA; the predominance of K-ATP/Ca2+ signaling control by low ADPMg(2+) rather than by high ATP levels; and a role for a more oxidized state (NAD(+)/NADH) in the cytosol during GIIS that favors high glycolysis rates.This study was supported by grants from Canadian Institutes of Health Research (to MP and SRMM) and a scholarship from Kuwait University to AA. MP holds the Canada Research Chair in Diabetes and Metabolis

    Regulation of lipolytic activity by long-chain acyl-coenzyme A in islets and adipocytes

    Get PDF
    Intracellular lipolysis is a major pathway of lipid metabolism that has roles, not only in the provision of free fatty acids as energy substrate, but also in intracellular signal transduction. The latter is likely to be particularly important in the regulation of insulin secretion from islet beta-cells. The mechanisms by which lipolysis is regulated in different tissues is, therefore, of considerable interest. Here, the effects of long-chain acyl-CoA esters (LC-CoA) on lipase activity in islets and adipocytes were compared. Palmitoyl-CoA (Pal-CoA, 1-10 mu M) stimulated lipase activity in islets from both normal and hormone-sensitive lipase (HSL)-null mice and in phosphatase-treated islets, indicating that the stimulatory effect was neither on HSL nor phosphorylation dependent. In contrast, we reproduced the previously published observations showing inhibition of HSL activity by LC-CoA in adipocytes. The inhibitory effect of LC-CoA on adipocyte HSL was dependent on phosphorylation and enhanced by acyl-CoA-binding protein (ACBP). In contrast, the stimulatory effect on islet lipase activity was blocked by ACBP, presumably due to binding and sequestration of LC-CoA. These data suggest the following intertissue relationship between islets and adipocytes with respect to fatty acid metabolism, LC-CoA signaling, and lipolysis. Elevated LC-CoA in islets stimulates lipolysis to generate a signal to increase insulin secretion, whereas elevated LC-CoA in adipocytes inhibits lipolysis. Together, these opposite actions of LC-CoA lower circulating fat by inhibiting its release from adipocytes and promoting fat storage via insulin action

    Fatty Acid Metabolites Combine with Reduced β Oxidation to Activate Th17 Inflammation in Human Type 2 Diabetes

    Get PDF
    Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, β oxidation blockade or CACT knockdown in T cells from lean subjects to mimic characteristics of T2D causes cells to utilize 16C-fatty acylcarnitine to support Th17 cytokines. These data show long-chain acylcarnitine combines with compromised β oxidation to promote disease-predictive inflammation in human T2D. Although glycolysis generally fuels inflammation, Nicholas, Proctor, and Agrawal et al. report that PBMCs from subjects with type 2 diabetes use a different mechanism to support chronic inflammation largely independent of fuel utilization. Loss- and gain-of-function experiments in cells from healthy subjects show mitochondrial alterations combine with increases in fatty acid metabolites to drive chronic T2D-like inflammation
    corecore