1,853 research outputs found
Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging
Highly fluorescent conjugated polymer dots were developed for demanding applications such as fluorescence imaging in live cells. These nanoparticles exhibit small particle diameters, extraordinary fluorescence brightness, and excellent photostability. Single particle fluorescence imaging and kinetic studies indicate much higher emission rates (∼108 s−1) and little or no blinking of the nanoparticles as compared to typical results for single dye molecules and quantum dots. Analysis of single particle photobleaching trajectories reveals excellent photostability—as many as 109 or more photons emitted per nanoparticle prior to irreversible photobleaching. The superior figures of merit of these new fluorescent probes, together with the demonstration of cellular imaging, indicate their enormous potential for demanding fluorescence-based imaging and sensing applications such as high speed super-resolution single molecule/particle tracking and highly sensitive assays
An Interprofessional Consensus of Core Competencies for Prelicensure Education in Pain Management: Curriculum Application for Physical Therapy
Core competencies in pain management for prelicensure health professional education were recently established. These competencies represent the expectation of minimal capabilities for graduating health care students for pain management and include 4 domains: multidimensional nature of pain, pain assessment and measurement, management of pain, and context of pain (Appendix 1). The purpose of this article is to advocate for and identify how core competencies for pain can be applied to the professional (entry-level) physical therapist curriculum. By ensuring that core competencies in pain management are embedded within the foundation of physical therapist education, physical therapists will have the core knowledge necessary for offering best care for patients, and the profession of physical therapy will continue to stand with all health professions engaged in comprehensive pain management
Crossover from Percolation to Self-Organized Criticality
We include immunity against fire as a new parameter into the self-organized
critical forest-fire model. When the immunity assumes a critical value,
clusters of burnt trees are identical to percolation clusters of random bond
percolation. As long as the immunity is below its critical value, the
asymptotic critical exponents are those of the original self-organized critical
model, i.e. the system performs a crossover from percolation to self-organized
criticality. We present a scaling theory and computer simulation results.Comment: 4 pages Revtex, two figures included, to be published in PR
The Robot Vision Track at ImageCLEF 2010
This paper describes the robot vision track that has been proposed to the ImageCLEF 2010 participants. The track addressed the problem of visual place classification, with a special focus on generalization. Participants were asked to classify rooms and areas of an offce environment on the basis of image sequences captured by a stereo camera mounted on a mobile robot, under varying illumination conditions. The algorithms proposed by the participants had to answer the question "where are you?" (I am in the kitchen, in the corridor, etc) when presented with a test sequence, acquired within the same building but at a different oor than the training sequence. The test data contained images of rooms seen during training, or additional rooms that were not imaged in the training sequence. The participants were asked to solve the problem separately for each test image (obligatory task). Additionally, results could also be reported for algorithms exploiting the temporal continuity of the image sequences (optional task). A total of seven groups partic- ipated to the challenge, with 42 runs submitted to the obligatory task, and 13 submitted to the optional task. The best result in the obligatory task was obtained by the Computer Vision and Geometry Laboratory, ETHZ, Switzerland, with an overall score of 677. The best result in the optional task was obtained by the Idiap Research Institute, Martigny, Switzerland, with an overall score of 2052
Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia
The existence of water-selective channels has been postulated to explain the high water permeability of erythrocytes and certain epithelial cells. The aquaporin CHIP (channel-forming integral membrane protein of 28 kDa), a molecular water channel, is abundant in erythrocytes and water-permeable segments of the nephron. To determine whether CHIP may mediate transmembrane water movement in other water-permeable epithelia, membranes of multiple organs were studied by immunoblotting, immunohistochemistry, and immunoelectron microscopy using affinity-purified anti-CHIP IgG. The apical membrane of the choroid plexus epithelium was densely stained, implying a role for CHIP in the secretion of cerebrospinal fluid. In the eye, CHIP was abundant in apical and basolateral domains of ciliary epithelium, the site of aqueous humor secretion, and also in lens epithelium and corneal endothelium. CHIP was detected in membranes of hepatic bile ducts and water-resorptive epithelium of gall bladder, suggesting a role in bile secretion and concentration. CHIP was not detected in glandular epithelium of mammary, salivary, or lacrimal glands, suggesting the existence of other water-channel isoforms. CHIP was also not detected within the epithelium of the gastrointestinal mucosa. CHIP was abundant in membranes of intestinal lacteals and continuous capillaries in diverse tissues, including cardiac and skeletal muscle, thus providing a molecular explanation for the known water permeability of certain lymphatics and capillary beds. These studies underscore the hypothesis that CHIP plays a major role in transcellular water movement throughout the body
The self-organized critical forest-fire model on large scales
We discuss the scaling behavior of the self-organized critical forest-fire
model on large length scales. As indicated in earlier publications, the
forest-fire model does not show conventional critical scaling, but has two
qualitatively different types of fires that superimpose to give the effective
exponents typically measured in simulations. We show that this explains not
only why the exponent characterizing the fire-size distribution changes with
increasing correlation length, but allows also to predict its asymptotic value.
We support our arguments by computer simulations of a coarse-grained model, by
scaling arguments and by analyzing states that are created artificially by
superimposing the two types of fires.Comment: 26 pages, 7 figure
CHIP28 water channels are localized in constitutively water-permeable segments of the nephron
The sites of water transport along the nephron are well characterized, but the molecular basis of renal water transport remains poorly understood. CHIP28 is a 28-kD integral protein which was proposed to mediate transmembrane water movement in red cells and kidney (Preston, G. M., T. P. Carroll, W. B. Guggino, and P. Agre. 1992. Science [Wash. DC]. 256:385-387). To determine whether CHIP28 could account for renal epithelial water transport, we used specific polyclonal antibodies to quantitate and localize CHIP28 at cellular and subcellular levels in rat kidney using light and electron microscopy. CHIP28 comprised 3.8% of isolated proximal tubule brush border protein. Except for the first few cells of the S1 segment, CHIP28 was immunolocalized throughout the convoluted and straight proximal tubules where it was observed in the microvilli of the apical brush border and in basolateral membranes. Very little CHIP28 was detected in endocytic vesicles or other intracellular structures in proximal tubules. Uninterrupted, heavy immunostaining of CHIP28 was also observed over both apical and basolateral membranes of descending thin limbs, including both short and long loops of Henle. These nephron sites have constitutively high osmotic water permeabilities. CHIP28 was not detected in ascending thin limbs, thick ascending limbs, or distal tubules, which are highly impermeable to water. Moreover, CHIP28 was not detected in collecting duct epithelia, where water permeability is regulated by antidiuretic hormone. These determinations of abundance and structural organization provide evidence that the CHIP28 water channel is the predominant pathway for constitutive transepithelial water transport in the proximal tubule and descending limb of Henle's loop
How Can Psychological Science Inform Research About Genetic Counseling for Clinical Genomic Sequencing?
Next generation genomic sequencing technologies (including whole genome or whole exome sequencing) are being increasingly applied to clinical care. Yet, the breadth and complexity of sequencing information raise questions about how best to communicate and return sequencing information to patients and families in ways that facilitate comprehension and optimal health decisions. Obtaining answers to such questions will require multidisciplinary research. In this paper, we focus on how psychological science research can address questions related to clinical genomic sequencing by explaining emotional, cognitive, and behavioral processes in response to different types of genomic sequencing information (e.g., diagnostic results and incidental findings). We highlight examples of psychological science that can be applied to genetic counseling research to inform the following questions: (1) What factors influence patients’ and providers’ informational needs for developing an accurate understanding of what genomic sequencing results do and do not mean?; (2) How and by whom should genomic sequencing results be communicated to patients and their family members?; and (3) How do patients and their families respond to uncertainties related to genomic information?Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147034/1/jgc40193.pd
- …