183 research outputs found

    Triple-Negative Breast Cancer: An Update on Neoadjuvant Clinical Trials

    Get PDF
    Triple-negative breast cancer (TNBC) is an aggressive malignancy with a poor prognosis despite the high rates of response to chemotherapy. This scenario highlights the need to develop novel therapies and/or treatment strategies to reduce the mortality associated with TNBC. The neoadjuvant setting provides a model for rapid assessment of treatment efficacy with smaller patient accruals and over shorter periods of time compared to the traditional adjuvant setting. In addition, a clear surrogate endpoint of improved survival, known as pathologic complete response, already exists in this setting. Here, we review current data from completed and ongoing neoadjuvant clinical trials for TNBC

    Induction chemotherapy with paclitaxel and cisplatin to concurrent radiotherapy and weekly paclitaxel in the treatment of loco-regionally advanced, stage IV (M0), head and neck squamous cell carcinoma. Mature results of a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>to evaluate activity and toxicity of a sequential treatment in advanced, non metastatic, mostly unresectable, head and neck squamous cell carcinoma.</p> <p>Methods</p> <p>Patients with loco-regionally advanced or unresectable, head and neck cancer, were prospectively treated with 3 courses of induction chemotherapy followed by concurrent chemoradiation. Induction chemotherapy consisted of paclitaxel 175 mg/m2 day 1 and cisplatin 75 mg/m2 day 2, given every 3 weeks, to a total of three courses. Curative radiotherapy started 4 weeks after the last cycle of chemotherapy with the goal of delivering a total dose ≥ 66 Gy. During RT weekly paclitaxel (40 mg/m2) was administered.</p> <p>Results</p> <p>The trial accrued 43 patients from January 1999 to December 2002. All patients received 3 courses of induction chemotherapy and the planned dose of radiotherapy. Thirty-eight patients were able to tolerate weekly paclitaxel during irradiation at least for 4 courses. After induction therapy there were 32 overall responses, 74.4% (23 partial and 9 complete); at completion of concomitant treatment overall responses were 42, 97.7% (20 partial and 22 complete). Median time to treatment failure was 20 months and the disease progression rate at 3 and 5 years was 33% and 23%, respectively. The median overall survival time was 24 months and 3 and 5 years overall survival rates were 37% and 26%, respectively. The major toxicity was mucositis.</p> <p>Conclusions</p> <p>This combined treatment was found to be feasible and active in advanced or unresectable, head and neck squamous cell carcinoma patients. Long-term results observed in this trial encourage to consider this approach in further investigation using newer radiation delivering technique and new molecularly agents.</p

    Native extracellular matrix: a new scaffolding platform for repair of damaged muscle

    Get PDF
    Effective clinical treatments for volumetric muscle loss resulting from traumatic injury or resection of a large amount of muscle mass are not available to date. Tissue engineering may represent an alternative treatment approach. Decellularization of tissues and whole organs is a recently introduced platform technology for creating scaffolding materials for tissue engineering and regenerative medicine. The muscle stem cell niche is composed of a three-dimensional architecture of fibrous proteins, proteoglycans, and glycosaminoglycans, synthesized by the resident cells that form an intricate extracellular matrix (ECM) network in equilibrium with the surrounding cells and growth factors. A consistent body of evidence indicates that ECM proteins regulate stem cell differentiation and renewal and are highly relevant to tissue engineering applications. The ECM also provides a supportive medium for blood or lymphatic vessels and for nerves. Thus, the ECM is the nature's ideal biological scaffold material. ECM-based bioscaffolds can be recellularized to create potentially functional constructs as a regenerative medicine strategy for organ replacement or tissue repopulation. This article reviews current strategies for the repair of damaged muscle using bioscaffolds obtained from animal ECM by decellularization of small intestinal submucosa (SIS), urinary bladder mucosa (UB), and skeletal muscle, and proposes some innovative approaches for the application of such strategies in the clinical setting

    Oral metronomic vinorelbine combined with endocrine therapy in hormone receptor-positive HER2-negative breast cancer: SOLTI-1501 VENTANA window of opportunity trial

    Get PDF
    Breast cancer; Metronomic; VinorelbineCáncer de mama; Quimioterapia metronómica; VinorelbinaCàncer de mama; Quimioteràpia metronòmica; VinorelbinaBackground: The biological effect of oral metronomic vinorelbine (mVNB) alone or in combination with endocrine therapy in patients with hormone receptor-positive (HR+)/HER2-negative breast cancer has been scarcely addressed. Methods: Postmenopausal women with untreated stage I-III HR+/HER2-negative breast cancer were randomized (1:1:1) to receive 3 weeks of letrozole (LTZ) 2.5 mg/day, oral mVNB 50 mg 3 days/week, or the combination. The primary objective was to evaluate, within PAM50 Luminal A/B disease, if the anti-proliferative effect of LTZ+mVNB was superior to monotherapy. An anti-proliferative effect was defined as the mean relative decrease of the PAM50 11-gene proliferation score in combination arm vs. both monotherapy arms. Secondary objectives included the evaluation of a comprehensive panel of breast cancer-related genes and safety. An unplanned analysis of stromal tumor-infiltrating lymphocytes (sTILs) was also performed. PAM50 analyses were performed using the nCounter®-based Breast Cancer 360™ gene panel, which includes 752 genes and 32 signatures. Results: Sixty-one patients were randomized, and 54 paired samples (89%) were analyzed. The main patient characteristics were mean age of 67, mean tumor size of 1.7 cm, mean Ki67 of 14.3%, stage I (55.7%), and grades 1-2 (90%). Most baseline samples were PAM50 Luminal A (74.1%) or B (22.2%). The anti-proliferative effect of 3 weeks of LTZ+mVNB (- 73.2%) was superior to both monotherapy arms combined (- 49.9%; p = 0.001) and mVNB (- 19.1%; p < 0.001). The anti-proliferative effect of LTZ+mVNB (- 73.2%) was numerically higher compared to LTZ (- 65.7%) but did not reach statistical significance (p = 0.328). LTZ+mVNB induced high expression of immune-related genes and gene signatures, including CD8 T cell signature and PDL1 gene and low expression of ER-regulated genes (e.g., progesterone receptor) and cell cycle-related and DNA repair genes. In tumors with ≤ 10% sTILs at baseline, a statistically significant increase in sTILs was observed following LTZ (paired analysis p = 0.049) and LTZ+mVNB (p = 0.012). Grade 3 adverse events occurred in 3.4% of the cases. Conclusions: Short-term mVNB is well-tolerated and presents anti-proliferative activity alone and in combination with LTZ. The high expression of immune-related biological processes and sTILs observed with the combination opens the possibility of studying this combination with immunotherapy. Further investigation comparing these biological results with other metronomic schedules or drug combinations is warranted.This study was supported by a grant from Pierre-Fabre. Pierre-Fabre had no role in the management of this trial. The decisions and responsibilities of this trial were all under the sponsor: SOLTI Group

    Clinical implications of the intrinsic molecular subtypes of breast cancer

    Get PDF
    AbstractGene-expression profiling has had a considerable impact on our understanding of breast cancer biology. During the last 15 years, 5 intrinsic molecular subtypes of breast cancer (Luminal A, Luminal B, HER2-enriched, Basal-like and Claudin-low) have been identified and intensively studied. In this review, we will focus on the current and future clinical implications of the intrinsic molecular subtypes beyond the current pathological-based classification endorsed by the 2013 St. Gallen Consensus Recommendations. Within hormone receptor-positive and HER2-negative early breast cancer, the Luminal A and B subtypes predict 10-year outcome regardless of systemic treatment administered as well as residual risk of distant recurrence after 5 years of endocrine therapy. Within clinically HER2-positive disease, the 4 main intrinsic subtypes can be identified and dominate the biological and clinical phenotype. From a clinical perspective, patients with HER2+/HER2-enriched disease seem to benefit the most from neoadjuvant trastuzumab, or dual HER2 blockade with trastuzumab/lapatinib, in combination with chemotherapy, and patients with HER2+/Luminal A disease seem to have a relative better outcome compared to the other subtypes. Finally, within triple-negative breast cancer (TNBC), the Basal-like disease predominates (70–80%) and, from a biological perspective, should be considered a cancer-type by itself. Importantly, the distinction between Basal-like versus non-Basal-like within TNBC might predict survival following (neo)adjvuvant multi-agent chemotherapy, bevacizumab benefit in the neoadjuvant setting (CALGB40603), and docetaxel vs. carboplatin benefit in first-line metastatic disease (TNT study). Overall, this data suggests that intrinsic molecular profiling provides clinically relevant information beyond current pathology-based classifications

    Genomic Analyses across Six Cancer Types Identify Basal-like Breast Cancer as a Unique Molecular Entity

    Get PDF
    To improve our understanding of the biological relationships among different types of cancer, we have characterized variation in gene expression patterns in a set of 1,707 samples representing 6 human cancer types (breast, ovarian, brain, colorectal, lung adenocarcinoma and squamous cell lung cancer). In the unified dataset, breast tumors of the Basal-like subtype were found to represent a unique molecular entity as any other cancer type, including the rest of breast tumors, while showing striking similarities with squamous cell lung cancers. Moreover, gene signatures tracking various cancer- and stromal-related biological processes such as proliferation, hypoxia and immune activation were found expressed similarly in different proportions of tumors across the various cancer types. These data suggest that clinical trials focusing on tumors with common profiles and/or biomarker expression rather than their tissue of origin are warranted with a special focus on Basal-like breast cancer and squamous cell lung carcinoma

    Phenotypic and genetic characterization of a family carrying two Xq21.1-21.3 interstitial deletions associated with syndromic hearing loss

    Get PDF
    Sensorineural hearing impairment is a common pathological manifestation in patients affected by X-linked intellectual disability. A few cases of interstitial deletions at Xq21 with several different phenotypic characteristics have been described, but to date, a complete molecular characterization of the deletions harboring disease-causing genes is still missing. Thus, the aim of this study is to realize a detailed clinical and molecular analysis of a family affected by syndromic X-linked hearing loss with intellectual disability

    Significant Clinical Activity of Olaparib in a Somatic BRCA1-Mutated Triple-Negative Breast Cancer With Brain Metastasis

    Get PDF
    Breast cancer is a biologically and clinically heterogeneous disease, and patients with similar clinical stage have markedly different outcomes. Triple-negative breast cancer (TNBC) is defined by the lack of expression of estrogen receptor (ER), progesterone receptor, and human epidermal growth factor receptor 2 (HER2).1,2 This subtype represents 15% to 20% of all breast cancers and is associated with the worst outcome of all subtypes, with greater tendency to distant recurrence in general and visceral metastasis in particular, including brain metastasis.3,4 To date, chemotherapy remains the standard of care for TNB

    Intrinsic Subtypes and Gene Expression Profiles in Primary and Metastatic Breast Cancer

    Get PDF
    Biological changes that occur during metastatic progression of breast cancer are still incompletely characterized. In this study, we compared intrinsic molecular subtypes and gene expression in 123 paired primary and metastatic tissues from breast cancer patients. Intrinsic subtype was identified using a PAM50 classifier and χ 2 tests determined the differences in variable distribution. The rate of subtype conversion was 0% in basal-like tumors, 23.1% in HER2-enriched (HER2-E) tumors, 30.0% in luminal B tumors, and 55.3% in luminal A tumors. In 40.2% of cases, luminal A tumors converted to luminal B tumors, whereas in 14.3% of cases luminal A and B tumors converted to HER2-E tumors. We identified 47 genes that were expressed differentially in metastatic versus primary disease. Metastatic tumors were enriched for proliferation-related and migration-related genes and diminished for luminal-related genes. Expression of proliferation-related genes were better at predicting overall survival in metastatic disease (OSmet) when analyzed in metastatic tissue rather than primary tissue. In contrast, a basal-like gene expression signature was better at predicting OSmet in primary disease compared with metastatic tissue. We observed correlations between time to tumor relapse and the magnitude of changes of proliferation, luminal B, or HER2-E signatures in metastatic versus primary disease. Although the intrinsic subtype was largely maintained during metastatic progression, luminal/HER2-negative tumors acquired a luminal B or HER2-E profile during metastatic progression, likely reflecting tumor evolution or acquisition of estrogen independence. Overall, our analysis revealed the value of stratifying gene expression by both cancer subtype and tissue type, providing clinicians more refined tools to evaluate prognosis and treatment. Cancer Res; 77(9); 1-9. ©2017 AACR

    Molecular Features and Survival Outcomes of the Intrinsic Subtypes Within HER2-Positive Breast Cancer

    Get PDF
    BackgroundThe clinical impact of the biological heterogeneity within HER2-positive (HER2+) breast cancer is not fully understood. Here, we evaluated the molecular features and survival outcomes of the intrinsic subtypes within HER2+ breast cancer.MethodsWe interrogated The Cancer Genome Atlas (n = 495) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) datasets (n = 1730) of primary breast cancers for molecular data derived from DNA, RNA and protein, and determined intrinsic subtype. Clinical HER2 status was defined according to American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guidelines or DNA copy-number aberration by single nucleotide polymorphism arrays. Cox models tested the prognostic significance of each variable in patients not treated with trastuzumab (n = 1711).ResultsCompared with clinically HER2 (cHER2)-negative breast cancer, cHER2+ breast cancer had a higher frequency of the HER2-enriched (HER2E) subtype (47.0% vs 7.1%) and a lower frequency of Luminal A (10.7% vs 39.0%) and Basal-like (14.1% vs 23.4%) subtypes. The likelihood of cHER2-positivity in HER2E, Luminal B, Basal-like and Luminal A subtypes was 64.6%, 20.0%, 14.4% and 7.3%, respectively. Within each subtype, only 0.3% to 3.9% of genes were found differentially expressed between cHER2+ and cHER2-negative tumors. Within cHER2+ tumors, HER2 gene and protein expression was statistically significantly higher in the HER2E and Basal-like subtypes than either luminal subtype. Neither cHER2 status nor the new 10-subtype copy number-based classification system (IntClust) added independent prognostic value to intrinsic subtype.ConclusionsWhen the intrinsic subtypes are taken into account, cHER2-positivity does not translate into large changes in the expression of downstream signaling pathways, nor does it affect patient survival in the absence of HER2 targeting
    corecore