1,894 research outputs found

    The Lunar Cataclysm and How LRO Can Help Test It

    Get PDF
    One of the important outstanding goals of lunar science is understanding the bombardment history of the Moon and calibrating the impact flux curve for extrapolation to the Earth and other terrestrial planets. The "terminal lunar cataclysm," a brief but intense period of bombardment about 3.9 billion years ago, is of particular scientific interest. Radiometric dating of lunar impact-melt rocks forms the backbone of the lunar cataclysm hypothesis. A histogram of precise age determinations of impact-melt rocks shows the characteristics of the classic formulation of the lunar cataclysm hypothesis: a sharp peak at 3.9 Ga, a steep decline after 3.9 Ga perhaps only 20-200 Myr long, and few rocks of impact origin prior to 4.0 Ga

    Robotic Lunar Landers for Science and Exploration

    Get PDF
    The MSFC/APL Robotic Lunar Landing Project (RLLDP) team has developed lander concepts encompassing a range of mission types and payloads for science, exploration, and technology demonstration missions: (1) Developed experience and expertise in lander systems, (2) incorporated lessons learned from previous efforts to improve the fidelity of mission concepts, analysis tools, and test beds Mature small and medium lander designs concepts have been developed: (1) Share largely a common design architecture. (2) Flexible for a large number of mission and payload options. High risk development areas have been successfully addressed Landers could be selected for a mission with much of the concept formulation phase work already complet

    The Violent Early Solar System, as Told by Lunar Sample Geochronology

    Get PDF
    One of the legacies of the samples collected by the Apollo and Luna missions is the link forged between radiometric ages of rocks and relative ages according to stratigraphic relationships and impact crater size-frequency distributions. Our current understanding of the history of the inner solar system is based on the relative chronology of individual planets, tied to the absolute geochronology of the Moon via these important samples. Sample ages have enabled us to infer that impact-melt breccias from Apollo 14 and 15 record the formation of the Imbrium Basin, those from the highland massifs at Apollo 17 record the age of Serenitatis, those from the KREEP-poor Apollo 16 site record the age of Nectaris, and materials from Luna 24 record the age of Crisium. Ejecta from smaller and younger craters Copernicus and Tycho were sampled at Apollo 12 and 17, respectively, and local craters such as Cone at Apollo 14, and North Ray and South Ray at Apollo 16 were also sampled and ages determined for those events. Much of what we understand about the lunar impact flux is based on these ages. Samples from these nearside locations reveal a preponderance of impact-disturbed or recrystallized ages between 3.75 and 3.95 billion years. Argon and lead loss (and correlated disturbances in the Rb-Sr system) have been attributed to metamorphism of the lunar crust by an enormous number of impacts in a brief pulse of time, called the Lunar Cataclysm or Late Heavy Bombardment. Subsequent high-precision geochronometric analyses of Apollo samples and lunar highlands meteorites show a wider range of ages, but very few older than 4 Ga. The paucity of ancient impact melt rocks has been interpreted to mean that either that most impact basins formed at this time, or that ejecta from the large, near-side, young basins dominates the Apollo samples

    International Lunar Network (ILN) Anchor Nodes

    Get PDF
    This slide presentation reviews the United States' contribution to the International Lunar Network (ILN) project, the Anchor Nodes project. The ILN is an initiative of 9 national space agencies to establish a set of robotic geophysical monitoring stations on the surface of the Moon. The project is aimed at furthering the understanding of the lunar composition, and interior structure

    The International Lunar Network

    Get PDF
    A new lunar science flight projects line has been introduced within NASA s Science Mission Directorate's (SMDs) proposed 2009 budget, including two new robotic missions designed to accomplish key scientific objectives and, when possible, provide results useful to the Exploration Systems Mission Directorate (ESMD) and the Space Operations Mission Directorate (SOMD) as those organizations grapple with the challenges of returning humans to the Moon. The first mission in this line will be the Lunar Reconnaissance Orbiter, an ESMD mission that will acquire key information for human return to the moon activities, which will transition after one year of operations to the SMD Lunar Science Program for a 2-year nominal science mission. The second mission, the Lunar Atmosphere and Dust Environment Explorer (LADEE) will be launch in 2011 along with the GRAIL Discovery mission to the moon. The third is delivery of two landed payloads as part of the International Lunar Network (ILN). This flight projects line provides a robust robotic lunar science program for the next 8 years and beyond, complements SMD s initiatives to build a robust lunar science community through R&A lines, and increases international participation in NASA s robotic exploration plans. The International Lunar Network is envisioned as a global lunar geophysical network, which fulfills many of the stated recommendations of the recent National Research Council report on The Scientific Context for Exploration of the Moon [2], but is difficult for any single space agency to accomplish on its own. The ILN would provide the necessary global coverage by involving US and international landed missions as individual nodes working together. Ultimately, this network could comprise 8-10 or more nodes operating simultaneously, while minimizing the required contribution from each space agency. Indian, Russian, Japanese, and British landed missions are currently being formulated and SMD is actively seeking partnership with these and other space agencies to establish the ILN

    A Review of Lunar Meteorite Impact-Melt Clast Compositions and Ages

    Get PDF
    One of the important outstanding goals of lunar science is understanding the bombardment history of the Moon and calibrating the impact flux curve for extrapolation to the Earth and other terrestrial planets. Obtaining a sample from a carefully-characterized interior melt sheet or ring massif is a reliable way to tell a single crater's age. A different but complementary approach is to use extensive laboratory characterization (microscopic, geochemical, isotopic) of float samples to understand the integrated impact history of a region. Both approaches have their merits and limitations. In essence, the latter is the approach we have used to understand the impact history of the Feldspathic Highland Terrain (FHT) as told by lunar feldspathic meteorites

    Geohazards on the Moon and the Importance of the International Lunar Network

    Get PDF
    Seven of the 28 shallow seismic events recorded by the Apollo passive seismic experiment (PSE) network released energy equivalent to earthquakes with magnitudes of 5 or greater. On Earth, such quakes can cause extensive damage to structures near the epicenter. Unexpected structural damage to a lunar habitat could have devastating results and thus, lunar seismicity may present a significant geohazard to long-term human habitation

    Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat

    Get PDF
    Lunar Flashlight is an exciting new mission concept in preformulation studies for NASA's Advanced Exploration Systems (AES) by a team from the Jet Propulsion Laboratory, UCLA, and Marshall Space Flight Center. This innovative, low-cost concept will map the lunar south pole for volatiles and demonstrate several technological firsts, including being the first CubeSat to reach the Moon, the first mission to use an 80 m2 solar sail, and the first mission to use a solar sail as a reflector for science observations. The Lunar Flashlight mission spacecraft maneuvers to its lunar polar orbit and uses its solar sail as a mirror to reflect 50 kW of sunlight down into shaded polar regions, while the on-board spectrometer measures surface reflection and composition. The Lunar Flashlight 6U spacecraft has heritage elements from multiple cubesat systems. The deployable solar sail/reflector is based on previous solar sail experiments, scaled up for this mission. The mission will demonstrate a path where 6U CubeSats could, at dramatically lower cost than previously thought possible, explore, locate and estimate size and composition of ice deposits on the Moon. Locating ice deposits in the Moon's permanently shadowed craters addresses one of NASA's Strategic Knowledge Gaps (SKGs) to detect composition, quantity, distribution, form of water/H species and other volatiles associated with lunar cold traps. Polar volatile data collected by Lunar Flashlight could then ensure that targets for more expensive lander- and rover-borne measurements would include volatiles in sufficient quantity and near enough to the surface to be operationally useful

    The Potassium-Argon Laser Experiment (KarLE): In Situ Geochronology for Mars and Beyond

    Get PDF
    The search for life in the solar system depends upon discovering the right moments in planetary evolution: when habitable environments existed, when they declined, and when geologic processes operated to preserve traces of life after death. However, an incomplete knowledge of absolute Martian geochronology limits our ability to understand the timing of Martian evolutionary milestones, major climate changes, and stratigraphic epochs [1, 2]. Absolute dating relates these habitability markers to planetarywide geologic, atmospheric, and climate history places, and ties their occurrence to the history of the solar system, especially the Earth-Moon system and the timescale of evolution of life on Earth. KArLE is being developed to anchor the relative timeline of geological events to an absolute chronology that puts Mars into a wider solar system context. KArLE makes its measurements on rock samples that can be obtained by landers or rovers and inserted into a small, mechanically simple chamber. KArLE interrogates the samples using laser-induced breakdown spectrocopy (LIBS), mass spectrometry, and optical imaging. The KArLE experiment is flexible enough to accommodate any partner providing these instrument components, a creative approach that extends the ability of mission payloads to accomplish an additional highly-desirable science measurement for low cost and risk and minimal extra hardware
    corecore