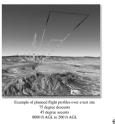

Future Robotic Lander

- + Many high-priority science and exploration objectives are uniquely met by landed lunar missions
 - International Lunar Network Mission: Determine the composition and structure of the moon's interior
 - · Lunar Polar Volatiles Explorer: In situ characterization of volatile species; understand current processes
 - Lunar Sample Return: Return rocks from unexplored sites, such as lunar farside or young lava flows, to terrestrial laboratories
 - Human Exploration Precursors: Characterize the lunar surface environment at landing sites: lighting, radiation, thermal, and dust; test technologies; demo ISRU


MSFC/APL Lander Development History

	ESM RLEP	ESMULPRP	s ^{MD} ILN	SNI RLLDP
	2005-2006	2006-2008	2008-2010	2010-Present
	17 Y			A
Project Objective	Human Precursor to South Pole • Crater rim experiments "See the light" • Crater floor volatiles "Touch the water"	Continue to Support Human Precursor Efforts • Incremental approach – Crater rim then Crater floor with rover • Technology Development	Develop Anchor Nodes for a Lunar Geophysical Network Engage other centers and industry to explore options Conduct risk reduction efforts	Complete and test WGTA Complete high priority risk reduction efforts ILN, xPRP, Lunar Polar Volatiles, Mercury, and NEA mission concepts
Primary Tasks	13 concept trade space Early concepts focused on extensibility to support human missions Later concepts were more focused (crater rim or crater floor)	Common lander development Delta II mission study ALHAT Precursor GN&C concept development TRN concept development Landing gear and energy absorbing materials trades	Concept trades looking at ASRG and solar battery concepts Risk reduction efforts for all subsystem areas Developed cold gas lander test- bed to integrate subsystems and identify system level risks	WGTA hover test completed April 14, 2011 DACS testing completed Completed work in several risk reduction areas Supported planetary decadal study
Lessons Learned	Direct descent most mass efficient (like Surveyor)	Common lander for crater rim and crater floor mission is feasible ALHAT Precursor is feasible	4 ASRG Landers Feasible on Atlas V 401 2 Solar Battery Landers Feasible on Falcon 9 B2 DoD propulsion technology highly desirable for mass and packaging	 RLLD risk reduction efforts are applicable for airless body lander missions Validated design. No major design changes required as a result of rigorous testing

GN&C - Helicopter Field Testing + Provides the capability to test GN&C flight hardware and software against a combination of realistic and stressing descent profiles and terrains. + Open-loop test data is provided to evaluate landing performance and terrain navigation capability in the GN&C high fidelity simulation as well as in a processor in the loop environment.



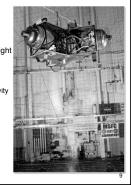
6

Structures - Lander Stability

- + Analysis capability to accurately predict the dynamics of touchdown in a stable manner, given a variety of landing scenarios
- + 3-D simulation and testing of a subscale lander with rigid- and energyabsorbing legs completed to anchor ADAMS models to test results

Propulsion – DACS Thruster Tests

- + For small landers, DACS thrusters used for primary landing propulsion
- + DACS thrusters have not operated for long durations; limited performance data is available
- Conducted vacuum tests of MDA DACS thrusters for landing (100 lb) and ACS (6 lb) to evaluate performance and thermal characteristics
- + Thrusters successfully demonstrated RLL flight profile (also continuous 66 sec on landing thrusters, 25 sec on ACS)
 - Combustion was stable in all testsTemperature measurements show
 - performance below material thermal limit
 - Remaining modifications and tests have been identified
 - been identilied

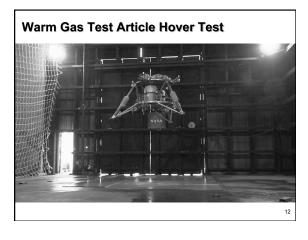


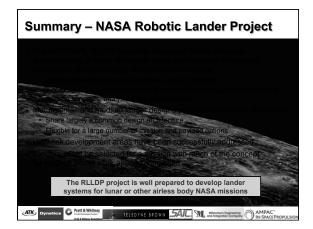
8

Cold Gas Test Article Overview

- + First Flight September 2009
- + Mass: 107 kg dry / 146 kg wet
- + Approximately 10s of flight time
- Compressed-air propulsion emulates flight system with pulsed operation

 3 Descent thrusters (~37lbf ea)
 - 6 ACS thrusters (~12lbf ea)
 - Central throttleable thruster offsets gravity
 3 compressed air tanks (3000 psi)
- + Carbon fiber / Al honeycomb decks
- + Custom avionics (COTS components assembled in-house)
- + Custom flight and ground software
- + Over 150 successful flights




11

Warm Gas Test Article Overview + Strap-down and hover tests complete, expected drop test in summer 2011 Mass: 206 kg dry / 322 kg wet + + Aluminum ortho-grid decks Hydrogen peroxide (90%) monopropellant propulsion system · Emulates flight system / pulsed operation 3 Descent thrusters 12 ACS thrusters · Central throttleable thruster offsets gravity + Sensors LN200-1 IMU. Roke Manor Radar Altimeter Illunis optical cameras, Novael Pro-Pak GPS Iruth data system, Pressure transducers & thermocouples for housekeeping + Flight-like Software · "In-Control" ground system software

Core Flight Executive (cFE) modular software
 environment

