45 research outputs found

    Prospects for a Statistical Theory of LC/TOFMS Data

    Get PDF
    The critical importance of employing sound statistical arguments when seeking to draw inferences from inexact measurements is well-established throughout the sciences. Yet fundamental statistical methods such as hypothesis testing can currently be applied to only a small subset of the data analytical problems encountered in LC/MS experiments. The means of inference that are more generally employed are based on a variety of heuristic techniques and a largely qualitative understanding of their behavior. In this article, we attempt to move towards a more formalized approach to the analysis of LC/TOFMS data by establishing some of the core concepts required for a detailed mathematical description of the data. Using arguments that are based on the fundamental workings of the instrument, we derive and validate a probability distribution that approximates that of the empirically obtained data and on the basis of which formal statistical tests can be constructed. Unlike many existing statistical models for MS data, the one presented here aims for rigor rather than generality. Consequently, the model is closely tailored to a particular type of TOF mass spectrometer although the general approach carries over to other instrument designs. Looking ahead, we argue that further improvements in our ability to characterize the data mathematically could enable us to address a wide range of data analytical problems in a statistically rigorous manner

    Orders of Magnitude Extension of the Effective Dynamic Range of TDC-Based TOFMS Data Through Maximum Likelihood Estimation

    Get PDF
    In a recent article, we derived a probability distribution that was shown to closely approximate that of the data produced by liquid chromatography time-of-flight mass spectrometry (LC/TOFMS) instruments employing time-to-digital converters (TDCs) as part of their detection system. The approach of formulating detailed and highly accurate mathematical models of LC/MS data via probability distributions that are parameterized by quantities of analytical interest does not appear to have been fully explored before. However, we believe it could lead to a statistically rigorous framework for addressing many of the data analytical problems that arise in LC/MS studies. In this article, we present new procedures for correcting for TDC saturation using such an approach and demonstrate that there is potential for significant improvements in the effective dynamic range of TDC-based mass spectrometers, which could make them much more competitive with the alternative analog-to-digital converters (ADCs). The degree of improvement depends on our ability to generate mass and chromatographic peaks that conform to known mathematical functions and our ability to accurately describe the state of the detector dead time—tasks that may be best addressed through engineering efforts. [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13361-014-0961-5) contains supplementary material, which is available to authorized users

    Integrative Mechanobiology of Growth and Architectural Development in Changing Mechanical Environments

    No full text
    Mention d'édition : P. Wotjaszek (ed)Mechanosensitive control of plant growth is a major process shaping how terrestrial plants acclimate to the mechanical challenges set by wind, self-weight, and autostresses. Loads acting on the plant are distributed down to the tissues, following continuum mechanics. Mechanosensing, though, occurs within the cell, building up into integrated signals; yet the reviews on mechanosensing tend to address macroscopic and molecular responses, ignoring the biomechanical aspects of load distribution to tissues and reducing biological signal integration to a "mean plant cell." In this chapter, load distribution and biological signal integration are analyzed directly. The Sum of Strain Sensing model S 3 m is then discussed as a synthesis of the state of the art in quantitative deterministic knowledge and as a template for the development of an integrative and system mechanobiology
    corecore