32 research outputs found

    Yellow fever 17D as a vaccine vector for microbial CTL epitopes: protection in a rodent malaria model

    Get PDF
    The yellow fever vaccine 17D (17D) is safe, and after a single immunizing dose, elicits long-lasting, perhaps lifelong protective immunity. One of the major challenges facing delivery of human vaccines in underdeveloped countries is the need for multiple injections to achieve full efficacy. To examine 17D as a vector for microbial T cell epitopes, we inserted the H-2Kd–restricted CTL epitope of the circumsporozoite protein (CS) of Plasmodium yoelii between 17D nonstructural proteins NS2B and NS3. The recombinant virus, 17D-Py, was replication competent and stable in vitro and in vivo. A single subcutaneous injection of 105 PFU diminished the parasite burden in the liver by ∌70%. The high level of protection lasted between 4 and 8 wk after immunization, but a significant effect was documented even 24 wk afterwards. Thus, the immunogenicity of a foreign T cell epitope inserted into 17D mimics some of the remarkable properties of the human vaccine. Priming with 17D-Py followed by boosting with irradiated sporozoites conferred sterile immunity to 90% of the mice. This finding indicates that the immune response of vaccine-primed individuals living in endemic areas could be sustained and magnified by the bite of infected mosquitoes

    Tunneling nanotubes provide a novel route for SARS-CoV-2 spreading between permissive cells and to non-permissive neuronal cells

    No full text
    Posté sur bioRxiv le 17 novembre 2021SARS-CoV-2 entry into host cells is mediated by the binding of its spike glycoprotein to the angiotensin-converting enzyme 2 (ACE2) receptor, highly expressed in several organs, but very low in the brain. The mechanism through which SARS-CoV-2 infects neurons is not understood. Tunneling nanotubes (TNTs), actin-based intercellular conduits that connect distant cells, allow the transfer of cargos, including viruses. Here, we explored the neuroinvasive potential of SARS-CoV-2 and whether TNTs are involved in its spreading between cells in vitro. We report that neuronal cells, not permissive to SARS-CoV-2 throughan exocytosis/endocytosis dependent pathway, can be infected when co-cultured with permissive infected epithelial cells. SARS-CoV-2 induces TNTs formation between permissive cells and exploits this route to spread to uninfected permissive cells in co-culture. Correlative Cryo-electron tomography reveals that SARS-CoV-2 is associated with the plasma membrane of TNTs formed between permissive cells and virus-like vesicular structures are inside TNTs established both between permissive cells and between permissive and non-permissive cells. Our data highlight a potential novel mechanism of SARS-CoV-2 spreading which could serve as route to invade non-permissive cells and potentiate infection in permissive cells

    Live attenuated yellow fever 17D infects human DCs and allows for presentation of endogenous and recombinant T cell epitopes.

    Get PDF
    International audienceThe yellow fever (YF) 17D vaccine is one of the most successful live attenuated vaccines available. A single immunization induces both long-lasting neutralizing antibody and YF-specific T cell responses. Surprisingly, the mechanism for this robust immunity has not been addressed. In light of several recent reports suggesting flavivirus interaction with dendritic cells (DCs), we investigated the mechanism of YF17D interaction with DCs and the importance of this interaction in generating T cell immunity. Our results show that YF17D can infect immature and mature human DCs. Viral entry is Ca(2+) dependent, but it is independent of DC-SIGN as well as multiple integrins expressed on the DC surface. Similar to infection of cell lines, YF infection of immature DCs is cytopathic. Although infection itself does not induce DC maturation in vitro, TNF-alpha-induced maturation protects DCs from YF-induced cytopathogenicity. Furthermore, we show that DCs infected with YF17D or YF17D carrying a recombinant epitope can process and present antigens for CD8(+) T cell stimulation. These findings offer insight into the immunologic mechanisms associated with the highly capable YF17D vaccine that may guide effective vaccine design

    Molecular mechanisms regulating the pH-dependent pr/E interaction in yellow fever virus

    No full text
    Flavivirus particles bud in the ER of infected cells as immature virions composed of 180 heterodimers of glycoproteins prM and E, associated as 60 (prM/E)3 trimeric spikes. Exposure to the mildly acidic pH of the TGN results in dissociation of the trimeric spikes followed by reassociation of the prM/E protomers into 90 dimers organized in a characteristic herringbone pattern. The furin site in prM is exposed in the dimers for maturation of prM into M and pr. For flaviviruses such as the tick-borne encephalitis virus (TBEV) as well as for dengue virus, it was shown that at neutral pH pr loses affinity for E, such that it dissociates from the mature particle as soon as it reaches the external milieu, which is at neutral pH. Using a soluble recombinant form of E (sE) and pr from yellow fever virus (YFV), we show here that the affinity of pr for recombinant E protein remains high even at neutral pH. The X-ray structure of YFV pr/sE shows more extensive inter-chain hydrogen bonding than does the dengue or TBEV, and also that it retains the charge complementarity between the interacting surfaces of the two proteins even at neutral pH. We further show that pr blocks sE flotation with liposomes when exposed at low pH at a 1:1 stoichiometry, yet in the context of the virus particle, an excess of 10:1 pr:E ratio is required to block virus/liposome fusion. In aggregate, our results show that the paradigm obtained from earlier studies of other flaviviruses does not apply to yellow fever virus, the flavivirus type species. A mechanism that does not rely solely in a change in the environmental pH is thus required for the release of pr from the mature particles upon release from infected cells. These results open up new avenues to understand the activation mechanism that yields mature, infectious YFV particles

    New insight into flavivirus maturation from structure/function studies of the yellow fever virus envelope protein complex

    No full text
    International audienceFlavivirus particle maturation, a process essential for virus infectivity, has been mostly studied using dengue virus. In infected cells, immature icosahedral virions bud into the endoplasmic reticulum. Budding is induced by lateral contacts between heterodimers of transmembrane glycoproteins prM and E. During exocytosis through the trans-Golgi network (TGN), the acidic environment triggers a major particle reorganization in which E forms head-to-tail dimers and furin cleaves prM into globular pr and transmembrane M proteins. pr remains bound to E at acidic pH and blocks its fusogenic activity, but at neutral pH, its affinity for E drops and pr is shed from the particle in the extracellular environment, leaving a virion activated for fusion at low pH. We report here that recombinant yellow fever virus (YFV) pr retains high affinity for soluble E (sE) at neutral pH—significantly shifting the current paradigm. The X-ray structure of the YFV pr/sE complex shows essentially the same pattern of interactions reported for dengue virus, while the X-ray structure of YFV sE at neutral pH shows the same canonical head-to-tail sE dimer. pr binding to the sE dimer is precluded by the E “150-loop,” indicating it must adopt a different conformation in the E dimers on virions at acidic pH for pr binding. We had previously reported a similar local reorganization of the E 150-loop at acidic pH for the tick-borne encephalitis virus, with the important difference that pr stabilized a soluble sE head-to-tail dimer, which is not the case for YFV.IMPORTANCE All enveloped viruses enter cells by fusing their envelope with a target cell membrane while avoiding premature fusion with membranes of the producer cell—the latter being particularly important for viruses that bud at internal membranes. Flaviviruses bud in the endoplasmic reticulum, are transported through the TGN to reach the external milieu, and enter other cells via receptor-mediated endocytosis. The trigger for membrane fusion is the acidic environment of early endosomes, which has a similar pH to the TGN of the producer cell. The viral particles therefore become activated to react to mildly acidic pH only after their release into the neutral pH extracellular environment. Our study shows that for yellow fever virus (YFV), the mechanism of activation involves actively knocking out the fusion brake (protein pr) through a localized conformational change of the envelope protein upon exposure to the neutral pH external environment. Our study has important implications for understanding the molecular mechanism of flavivirus fusion activation in general and points to an alternative way of interfering with this process as an antiviral treatment

    FluoRNT: A robust, efficient assay for the detection of neutralising antibodies against yellow fever virus 17D

    Get PDF
    International audienceThere is an urgent need for better diagnostic and analytical methods for vaccine research and infection control in virology. This has been highlighted by recently emerging viral epidemics and pandemics (Zika, SARS-CoV-2), and recurring viral outbreaks like the yellow fever outbreaks in Angola and the Democratic Republic of Congo (2016) and in Brazil (2016–2018). Current assays to determine neutralising activity against viral infections in sera are costly in time and equipment and suffer from high variability. Therefore, both basic infection research and diagnostic population screenings would benefit from improved methods to determine virus-neutralising activity in patient samples. Here we describe a robust, objective, and scalable Fluo rescence R eduction N eutralisation T est (FluoRNT) for yellow fever virus, relying on flow cytometric detection of cells infected with a fluorescent Venus reporter containing variant of the yellow fever vaccine strain 17D (YF-17D-Venus). It accurately measures neutralising antibody titres in human serum samples within as little as 24 h. Samples from 32 vaccinees immunised with YF-17D were tested for neutralising activity by both a conventional focus reduction neutralisation test (FRNT) and FluoRNT. Both types of tests proved to be equally reliable for the detection of neutralising activity, however, FluoRNT is significantly more precise and reproducible with a greater dynamic range than conventional FRNT. The FluoRNT assay protocol is substantially faster, easier to control, and cheaper in per-assay costs. FluoRNT additionally reduces handling time minimising exposure of personnel to patient samples. FluoRNT thus brings a range of desirable features that can accelerate and standardise the measurement of neutralising anti-yellow fever virus antibodies. It could be used in applications ranging from vaccine testing to large cohort studies in systems virology and vaccinology. We also anticipate the potential to translate the methodology and analysis of FluoRNT to other flaviviruses such as West Nile, Dengue and Zika or to RNA viruses more generally
    corecore