9 research outputs found

    A Path-integral for the Master Constraint of Loop Quantum Gravity

    Full text link
    In the present paper, we start from the canonical theory of loop quantum gravity and the master constraint programme. The physical inner product is expressed by using the group averaging technique for a single self-adjoint master constraint operator. By the standard technique of skeletonization and the coherent state path-integral, we derive a path-integral formula from the group averaging for the master constraint operator. Our derivation in the present paper suggests there exists a direct link connecting the canonical Loop quantum gravity with a path-integral quantization or a spin-foam model of General Relativity.Comment: 19 page

    The Holst Spin Foam Model via Cubulations

    Full text link
    Spin foam models are an attempt for a covariant, or path integral formulation of canonical loop quantum gravity. The construction of such models usually rely on the Plebanski formulation of general relativity as a constrained BF theory and is based on the discretization of the action on a simplicial triangulation, which may be viewed as an ultraviolet regulator. The triangulation dependence can be removed by means of group field theory techniques, which allows one to sum over all triangulations. The main tasks for these models are the correct quantum implementation of the Plebanski constraints, the existence of a semiclassical sector implementing additional "Regge-like" constraints arising from simplicial triangulations, and the definition of the physical inner product of loop quantum gravity via group field theory. Here we propose a new approach to tackle these issues stemming directly from the Holst action for general relativity, which is also a proper starting point for canonical loop quantum gravity. The discretization is performed by means of a "cubulation" of the manifold rather than a triangulation. We give a direct interpretation of the resulting spin foam model as a generating functional for the n-point functions on the physical Hilbert space at finite regulator. This paper focuses on ideas and tasks to be performed before the model can be taken seriously. However, our analysis reveals some interesting features of this model: first, the structure of its amplitudes differs from the standard spin foam models. Second, the tetrad n-point functions admit a "Wick-like" structure. Third, the restriction to simple representations does not automatically occur -- unless one makes use of the time gauge, just as in the classical theory.Comment: 25 pages, 1 figure; v3: published version. arXiv admin note: substantial text overlap with arXiv:0911.213

    On the Relation between Operator Constraint --, Master Constraint --, Reduced Phase Space --, and Path Integral Quantisation

    Full text link
    Path integral formulations for gauge theories must start from the canonical formulation in order to obtain the correct measure. A possible avenue to derive it is to start from the reduced phase space formulation. In this article we review this rather involved procedure in full generality. Moreover, we demonstrate that the reduced phase space path integral formulation formally agrees with the Dirac's operator constraint quantisation and, more specifically, with the Master constraint quantisation for first class constraints. For first class constraints with non trivial structure functions the equivalence can only be established by passing to Abelian(ised) constraints which is always possible locally in phase space. Generically, the correct configuration space path integral measure deviates from the exponential of the Lagrangian action. The corrections are especially severe if the theory suffers from second class secondary constraints. In a companion paper we compute these corrections for the Holst and Plebanski formulations of GR on which current spin foam models are based.Comment: 43 page

    Feynman diagrammatic approach to spin foams

    Full text link
    "The Spin Foams for People Without the 3d/4d Imagination" could be an alternative title of our work. We derive spin foams from operator spin network diagrams} we introduce. Our diagrams are the spin network analogy of the Feynman diagrams. Their framework is compatible with the framework of Loop Quantum Gravity. For every operator spin network diagram we construct a corresponding operator spin foam. Admitting all the spin networks of LQG and all possible diagrams leads to a clearly defined large class of operator spin foams. In this way our framework provides a proposal for a class of 2-cell complexes that should be used in the spin foam theories of LQG. Within this class, our diagrams are just equivalent to the spin foams. The advantage, however, in the diagram framework is, that it is self contained, all the amplitudes can be calculated directly from the diagrams without explicit visualization of the corresponding spin foams. The spin network diagram operators and amplitudes are consistently defined on their own. Each diagram encodes all the combinatorial information. We illustrate applications of our diagrams: we introduce a diagram definition of Rovelli's surface amplitudes as well as of the canonical transition amplitudes. Importantly, our operator spin network diagrams are defined in a sufficiently general way to accommodate all the versions of the EPRL or the FK model, as well as other possible models. The diagrams are also compatible with the structure of the LQG Hamiltonian operators, what is an additional advantage. Finally, a scheme for a complete definition of a spin foam theory by declaring a set of interaction vertices emerges from the examples presented at the end of the paper.Comment: 36 pages, 23 figure

    Canonical path integral measures for Holst and Plebanski gravity. I. Reduced Phase Space Derivation

    Full text link
    An important aspect in defining a path integral quantum theory is the determination of the correct measure. For interacting theories and theories with constraints, this is non-trivial, and is normally not the heuristic "Lebesgue measure" usually used. There have been many determinations of a measure for gravity in the literature, but none for the Palatini or Holst formulations of gravity. Furthermore, the relations between different resulting measures for different formulations of gravity are usually not discussed. In this paper we use the reduced phase technique in order to derive the path-integral measure for the Palatini and Holst formulation of gravity, which is different from the Lebesgue measure up to local measure factors which depend on the spacetime volume element and spatial volume element. From this path integral for the Holst formulation of GR we can also give a new derivation of the Plebanski path integral and discover a discrepancy with the result due to Buffenoir, Henneaux, Noui and Roche (BHNR) whose origin we resolve. This paper is the first in a series that aims at better understanding the relation between canonical LQG and the spin foam approach.Comment: 27 pages, minor correction

    Operator Spin Foam Models

    Full text link
    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. We discuss the examples: BF spin foam model, the BC model, and the model obtained by application of our framework to the EPRL intertwiners.Comment: 19 pages, 11 figures, RevTex4.

    On the Implementation of the Canonical Quantum Simplicity Constraint

    Full text link
    In this paper, we are going to discuss several approaches to solve the quadratic and linear simplicity constraints in the context of the canonical formulations of higher dimensional General Relativity and Supergravity developed in our companion papers. Since the canonical quadratic simplicity constraint operators have been shown to be anomalous in any dimension D>2, non-standard methods have to be employed to avoid inconsistencies in the quantum theory. We show that one can choose a subset of quadratic simplicity constraint operators which are non-anomalous among themselves and allow for a natural unitary map of the spin networks in the kernel of these simplicity constraint operators to the SU(2)-based Ashtekar-Lewandowski Hilbert space in D=3. The linear constraint operators on the other hand are non-anomalous by themselves, however their solution space will be shown to differ in D=3 from the expected Ashtekar-Lewandowski Hilbert space. We comment on possible strategies to make a connection to the quadratic theory. Also, we comment on the relation of our proposals to existing work in the spin foam literature and how these works could be used in the canonical theory. We emphasise that many ideas developed in this paper are certainly incomplete and should be considered as suggestions for possible starting points for more satisfactory treatments in the future.Comment: 30 pages, 2 figures. v2: Journal version. Comparison to existing approaches added. Discussion extended. References added. Sign error in equation (2.15) corrected. Minor clarifications and correction

    Spin-Foams for All Loop Quantum Gravity

    Full text link
    The simplicial framework of Engle-Pereira-Rovelli-Livine spin-foam models is generalized to match the diffeomorphism invariant framework of loop quantum gravity. The simplicial spin-foams are generalized to arbitrary linear 2-cell spin-foams. The resulting framework admits all the spin-network states of loop quantum gravity, not only those defined by triangulations (or cubulations). In particular the notion of embedded spin-foam we use allows to consider knotting or linking spin-foam histories. Also the main tools as the vertex structure and the vertex amplitude are naturally generalized to arbitrary valency case. The correspondence between all the SU(2) intertwiners and the SU(2)×\timesSU(2) EPRL intertwiners is proved to be 1-1 in the case of the Barbero-Immirzi parameter ∣γ∣≥1|\gamma|\ge 1, unless the co-domain of the EPRL map is trivial and the domain is non-trivial.Comment: RevTex4, 23 pages, 8 figures; important references added; minor corrections, version published in Class.Quant.Grav; theorem of injectivity of EPRL map correcte
    corecore