23 research outputs found

    Biomass production and essential oil of rosemary (Rosmarinus officinalis L.) in function of the height and interval between the cuts

    Get PDF
    Rosemary is an exotic plant and the interest in its cultivation has been growing along the years, because it can be used for medicinal or aromatic ends, however the agricultural knowledge about the species is quite limited. The goal of this research was to evaluate the influence of the cutting height and of the interval of these cuts on the biomass production and on the yield of the rosemary essential oil. The experiment was conducted at the Agronomical Institute, in Campinas - SP, from January 2006 through July 2007. It was organized in a completely randomized design with 8 treatments in a 2 x 4 factorial system, with two cutting heights (20 and 40 cm) and four intervals between cuts (60, 80, 100, 120 days) and three replications. Characteristics such as plant height, dry mass of the aerial part, yield and quality of its essential oil were evaluated. It was observed that longer intervals among cuttings provided longer height of the plant and greater dried mass of the aerial part. The yield and the quality of the essential oil were not affected throughout the experimental period.O alecrim é planta exótica e o interesse no seu cultivo tem crescido ao longo dos anos, pois pode ser utilizado tanto para fins medicinais como aromáticos; no entanto, o conhecimento fitotécnico sobre a espécie é bastante limitado. Dessa forma, o trabalho objetivou avaliar a influência da altura de corte e do intervalo destes sobre a produção de biomassa e no rendimento do óleo essencial de alecrim. O experimento foi realizado no Instituto Agronômico, em Campinas - SP, no período de janeiro de 2006 a julho de 2007. O delineamento experimental utilizado foi em blocos ao acaso, com 8 tratamentos em esquema fatorial 2 x 4, sendo duas alturas de corte (20 e 40 cm) e quatro intervalos entre cortes (60, 80, 100, 120 dias) e três repetições. Foram avaliadas as características altura da planta, massa seca da parte aérea, rendimento e qualidade do óleo essencial. Observou-se que maiores intervalos entre cortes proporcionaram maior altura da planta e maior massa seca da parte aérea. O rendimento e a qualidade do óleo essencial não foram afetados ao longo do período experimental.19520

    (-)-di-de-o-methylgrandisin, A Lignan From Virola Pavonis Leaves

    No full text
    Leaves of Virola pavonis yielded a (7α,7′β,8β,8′α)-4,4′-dihydroxy-3,3′5,5′-tetramethoxy-7,7′-epoxyligna (-)-di-de-O-methylgrandisin. © 1992.301242044205Barata, Baker, Gottlieb, Rúveda, (1978) Phytochemistry, 17, p. 783Santos, Barata, Determination of the Absolute Configuration of (+)- Surinamensin's via Diastereomeric O-Methylmandelic Esters (1990) Journal Of The Brazilian Chemical Society, 1, p. 47Barata, (1985) International Research Congress on Natural Products, p. 119. , North Caroline, Chapel Hill, AbstractsPaulino Filho, (1985) Ph.D. Thesis. USP, , Săo Paulo, BrazilFerri, Barata, (1987) Abstract of 39th Congress of Sociedade Brasileira para o Progresso da Ciência, , 18-D.2.5Sarkanen, Wallis, Oxidative dimerizations of (E)- and (Z)-isoeugenol (2-methoxy-4-pro-penylphenol) and (E)- and (Z)-2,6-dimethoxy-4-propenylphenol (1973) Journal of the Chemical Society, Perkin Transactions 1, p. 1869Barbosa-Filho, Silva, Yoshida, Gottlieb, (1989) Phytochemistry, 28, p. 2209Pelter, Stainton, Barber, The mass spectra of oxygen heterocycles (III) . An examination of simple lignans (1966) Journal of Heterocyclic Chemistry, 3, p. 191Sarkanen, Wallis, PMR analysis and conformation of 2,5-Bis-(3,4,5-trimethoxyphcnyl)-3,4-dimethy|tetrahydrofuran isomers (1973) Journal of Heterocyclic Chemistry, 10, p. 1025Budzkiewicz, Djerassi, Williams, (1964) Interpretation of Mass Spectra of Organic Compounds, , Holden-Day, San FranciscoHolloway, Scheinman, (1974) Phytochemistry, 13, p. 123

    Neolignans And A Phenylpropanoid From Virola Pavonis Leaves

    No full text
    Pavonisol, a new C-1/C-2 oxygenated phenylpropanoid, together with the known eusiderin-E and an 8,4′-oxyneolignan, were isolated from Virola pavonis leaves. Their structures were established by spectroscopic methods and chemical transformations. © 1992.31413751377Shultes, Holmstedt, (1971) Lloydia, 34, p. 61Fernandes, Ribeiro, Gottlieb, Gottlieb, (1980) Phytochemistry, 19, p. 1523Gottlieb, Loureiro, Carneiro, Rocha, (1973) Phytochemistry, 12, p. 1830Carneiro, Yoshida, Gottlieb, (1983) 35th Congress of Sociedade Brasileira para o Progresso da Ciência, , Abstract 47-D.2.5Ferri, Barata, (1992) Phytochemistry, , in pressCavalcante, Yoshida, Gottlieb, (1985) Phytochemistry, 24, p. 1051MacRae, Towers, (1985) Phytochemistry, 24, p. 561Zanaroti, (1983) J. Chem. Res. (S), p. 306Braz, Mourão, Gottlieb, Maia, (1976) Tetrahedron Letters, 15, p. 1157Rodrigues, Fernandes, Braz, Yoshida, Gottlieb, (1984) Phytochemistry, 23, p. 667Barbosa, Silva, Yoshida, Gottlieb, (1989) Phytochemistry, 28, p. 2209Dias, Fernandes, Maia, Gottlieb, Gottlieb, (1986) Phytochemistry, 25, p. 213Whiting, (1987) Nat. Prod. Rep., 4, p. 499Schmid, Determination oferythroandthreoconfigurations by nuclear magnetic resonance spectroscopy (1968) Canadian Journal of Chemistry, 46, p. 3415Nishiyama, Eto, Tereda, Yguchi, Yamamura, (1983) Chem. Pharm. Bull., 31, p. 2834Pascual, Pascual, Arias, Hernández, Morin, Grande, (1985) Phytochemistry, 24, p. 1773Hada, Hattori, Tezuka, Kikuchi, Namba, (1988) Phytochemistry, 27, p. 563Miski, Mabry, (1986) J. Nat. Prod., 49, p. 657Miski, Jakupovic, (1990) Phytochemistry, 29, p. 173Bottini, Dev, Garfagnoli, Mathela, Melkane, Miller, Sturn, (1986) Phytochemistry, 25, p. 207Pearl, (1948) J. Am. Chem. Soc., 70, p. 1746Wallis, Oxidative dimerization of methyl (E)-sinapate (1973) Australian Journal of Chemistry, 26, p. 58

    Lignans And A Neolignan From Virola Oleifera Leaves

    No full text
    The chlorophyll-free dichloromethane fraction of the ethanolic extract from leaves of Virola oleifera yielded four new natural lignans, including a. © 1993.32615671572Paulino, (1985) Ph.D. Thesis, , USP, São Paulo, BrazilRodrigues, (1976) Ph.D. Thesis, , UNICAMP, S~ao Paulo, BrazilHughes, Ritchie, The chemical constituents ofHimantandraspecies. I. The Lignins ofHimantandra baccataBail. andH. belgraveanaF. Muell (1954) Australian Journal of Chemistry, 7, p. 104Bowden, Ritchie, Taylor, Constituents ofEupomatiaSpecies. II. Isolation and Structure Determination of Further Eupomatenoid Lignans From the Bark ofEupomatia laurina (1972) Australian Journal of Chemistry, 25, p. 2659Urzúa, Freyer, Shamma, (1987) Phytochemistry, 26, p. 1509Kato, Yoshida, Gottlieb, (1990) Phytochemistry, 29, p. 1799Moss, (1989) IUPAC-IUB Joint Commission on Biochemical Nomenclature, 25–22, p. 1Coll, Bowden, (1986) J. Nat. Prod., 49, p. 934Achenbach, Grob, Dominguez, Cano, Verde, Brussolo, Munoz, López, (1987) Phytochemistry, 26, p. 1159McCredie, Ritchie, Taylor, Constituents ofEupomatiaspecies. The structure and synthesis of eupomatene, a lignan of novel type fromEupomatia laurinaR. Br (1969) Australian Journal of Chemistry, 22, p. 1011Crossley, Djerassi, 275. Naturally occurring oxygen heterocyclics. Part XI. Veraguensin (1962) Journal of the Chemical Society (Resumed), p. 1459Rao, Rao, (1990) J. Nat. Prod., 53, p. 212Moro, Fernandes, Vieira, Yoshida, Gottlieb, Gottlieb, (1987) Phytochemistry, 26, p. 269Nakatani, Ikeda, Kikuzaki, Kido, Yamaguchi, (1988) Phytochemistry, 27, p. 3127Whiting, (1990) Nat. Prod. Rep., 7, p. 349Bhacca, Stevenson, (1963) J. Org. Chem., 28, p. 1638Liu, Huang, Ayer, Nakashima, (1984) Phytochemistry, 23, p. 1143Kuo, Lin, Wu, Three new lignans from the nutmeg of Myristica cagayanesis. (1989) CHEMICAL & PHARMACEUTICAL BULLETIN, 37, p. 2310Urzúa, Shamma, The 4-Aryltetralones of Aristolochia chilensis (1988) Journal of Natural Products, 51, p. 11

    Sar Analysis Of Synthetic Neolignans And Related Compounds Which Are Anti-leishmaniasis Active Compounds Using Pattern Recognition Methods

    No full text
    Potentially active new neolignan and analogues against leishmaniasis are proposed. Structure-activity relationship (SAR) techniques were employed. Physicochemical properties such as log P, molecular volume, atomic charge and quantum chemical parameters were calculated for a group of synthetic substances for which the biological activities against leishmaniasis are known. Only about half a dozen out of more than twenty parameters were found to be efficient for the classification of the compounds into active and inactive groups. © 1995.3401-3185192Gottlieb, (1977) Fortschr. Chem. Org. Naturst., 35, p. 1Whiting, (1990) Nat. Prod. Rep., 7, p. 349Barata, Isolamento e Sínteses de Neolignanas de Virola surinamensis (1976) Ph.D. Thesis, , 8th edn., Universidade Estadual de Campinas, Campinas-SP, BrazilBarata, Baker, Gottlieb, Ruveda, (1978) Phytochemistry, 17, p. 783Santos, Síntese e Atividade Biológica de Neolignanas 8.0.4′ Derivados e Compostos Correlatos (1991) Ph.D. Thesis, , 8th edn., Universidade Estadual de Campinas, Campinas-SP, BrazilBarata, Santos, Fernandes, Ferri, Queiroz, Neal, Jourdan, Natural and Synthetic Bioactive Neolignans (1991) II Simpósio Brasileiro-Alemão de Produtos Naturais, , HannoverL.E.S. Barata and R. Neal, Anti-Leishmanial Activity of Neolignans from Virola Species and Synthesis Analogues Related to Neolignans, unpublished dataKarcher, Devillers, Practical applications of quantitative structure-activity relationships (QSAR) in environmental chemistry and toxicology (1990) Chemical and Environmental Science, 1, p. 1. , 8th edn., W. Karcher, J. Devillers, Kluwer Academic Publishers, DordrechtBurket, Allinger, Molecular Mechanics (1982) ACS Monograph, , Washington D.CNys, Rekker, (1974) Eur. J. Med. Chem. Chim. Ther., 9, p. 361Gaudio, Takahata, (1992) Comput. Chem., 16, p. 277Higo, Go, Algorithm for rapid calculation of excluded volume of large molecules (1989) Journal of Computational Chemistry, 10, p. 376Stewart, Optimization of parameters for semiempirical methods I. Method (1989) Journal of Computational Chemistry, 10, p. 209Stewart, Optimization of parameters for semiempirical methods II. Applications (1989) Journal of Computational Chemistry, 10, p. 221Scarminio, Bruns, (1989) Trends Anal. Chem., 8, p. 326Fukunaga, Koontz, Application of the Karhunen-Loève Expansion to Feature Selection and Ordering (1970) IEEE Transactions on Computers, 100-119, p. 311Cover, Hart, Nearest neighbor pattern classification (1967) IEEE Transactions on Information Theory, 13 IT, p. 21Kowalski, Bender, (1972) J. Am. Chem. Soc., 94, p. 5632Kowalski, (1984) Chemometrics, Mathematics and Statistics in Chemistry, pp. 51-53. , D. Reidel Publ. Comp, Dordrech

    Cytotoxic Derivatives Of Withanolides Isolated From The Leaves Of Acnistus Arborescens [derivados Citotóxicos De Vitanolidos Isolados Das Folhas De Acnistus Arborescens]

    No full text
    In view of anticancer activity of 7 β-acetoxywithanolide D (2) and 7β-16α-diacetoxywithonide D (3), isolated from the leaves of Acnistus arborescens (Solanaceae), five withanolide derivatives were obtained and their structures were determined by NMR, MS and IV data analysis. The in vitro anticancer activity of these derivatives was evaluated in a panel of cancer cell lines: human breast (BC-1), human lung (Lu1), human colon (Col2) and human oral epidermoid carcinoma (KB). Compounds 2a (acetylation of 2), 3b (oxidation of 3) and 2c (hydrogenation of 2) exhibited the highest anticancer activity against human lung cancer cells, with ED50 values of 0.19, 0.25 and 0.63 μg/mL, respectively.342237241Braz-Filho, R., (2010) Quim. Nova, 33, p. 229Lavie, D., Yarden, A., (1962) J. Chem. Soc., p. 2925Lavie, D., Greenfield, S., Glotter, E., (1966) J. Chem. Soc., p. 1753Glotter, E., (1991) Nat. Prod. Rep., 8, p. 415Kupchan, S.M., Anderson, W.K., Bollinger, P., Doskotch, R.W., Smith, R.M., Renauld, J.A.S., Schnoes, H.K., Smith, D.H., (1965) J. Am. Chem. Soc., 87, p. 5805Barata, L.E.S., Mors, W.B., Kirson, I., Lavie, D., (1970) An. Acad. Bras. Cienc., 42, p. 401Minguzzi, S., Barata, L.E.S., Shin, G.S., Chai, H.B., Park, E.J., Pezzuto, J.M., Cordell, G.A., (2002) Phytochemistry, 59, p. 635Veras, M.L., Bezerra, M.Z.B., Lemos, T.L.G., Uchoa, D.E.A., Braz-Filho, R., Chai, H.B., Cordell, G.A., Pessoa, O.D.L., (2004) J. Nat. Prod., 67, p. 710Veras, M.L., Bezerra, M.Z.B., Braz-Filho, R., Pessoa, O.D.L., Montenegro, R.C., Pessoa, C., Moraes, M.O., Lotufo, L.V.C., (2004) Planta Med., 67, p. 710Cordero, C.P., Morantes, S.J., Paez, A., Rincon, J., Aristizabal, F.A., (2009) Fitoterapia, 80, p. 364Manickam, M., Awasthi, S.B., Sinha-Bagchi, A., Sinha, S.C., Ray, A.B., (1996) Phytochemistry, 41, p. 981Manickam, M., Srivastava, A., Ray, A.B., (1998) Phytochemistry, 47, p. 1427Bratati, D., (2003) Fitoterapia, 74, p. 14Bhat, B.A., Dhar, K.L., Puri, S.C., Qurishi, M.A., Khajuria, A., Gupta, A., Qazi, G.N., (2005) Bioorg. Med. Chem., 13, p. 6672Nicotra, V.E., Gil, R.R., Vaccarini, C.E., Oberti, J.C., Burton, G., (2003) J. Nat. Prod., 66, p. 1471Nicotra, V.E., Ramacciotti, N.S., Gil, R.R., Oberti, J.C., Feresin, G.E., Guerrero, C.A., Baggio, R.F., Burton, G., (2006) J. Nat. Prod., 69, p. 783Nicotra, V.E., Gil, R.R., Oberti, J.C., Burton, G., (2007) J. Nat. Prod., 70, p. 808Maldonado, E., Torres, F.R., Martinez, M., Perez-Castorena, A.L., (2004) Planta Med., 70, p. 59Lan, Y.H., Chang, F.R., Pan, M.J., Wu, C.C., Wu, S.J., Chen, S.L., Wang, S.S., Wu, Y.C., (2009) Food Chem., 116, p. 462Maldonado, E., Amador, S., Martinez, M., Perez-Castorena, A.L., (2010) Steroids, 75, p. 346Choudhary, M.I., Shahwar, D., Parveen, Z., Jabbar, A., Ali, I., Rahman, A.U., (1995) Phytochemistry, 40, p. 1243Benjumea, D., Herrera, M., Abdala, S., Gutierrez-Luis, J., Quinones, W., Cardona, D., Torres, F., Echeverri, F., (2009) J. Ethnopharmacol., 123, p. 351Misico, R.I., Song, L.L., Veleiro, A.S., Cirigliano, A.M., Tettamanzi, M.C., Burton, G., Bonetto, G.M., Pezzuto, J.M., (2002) J. Nat. Prod., 65, p. 677Huang, C.F., Ma, L., Sun, L.J., Ali, M., Arfan, M., Liu, J.W., Hu, L.H., (2009) Chem. Biodivers., 6, p. 1415Pomilio, A.B., Falzoni, E.M., Vitale, A.A., (2008) Nat. Prod. Commun., 3, p. 593Silva, T.M.S., Camara, C.A., Freire, K.R.L., Silva, T.G., Agra, M.F., Bhattacharyya, J., (2008) J. Braz. Chem. Soc., 19, p. 1048Counsell, R.E., Klimstra, P.D., Colton, F.B., (1962) J. Org. Chem., 27, p. 248Likhitwitayawuid, K., Angerhofer, C.K., Cordell, G.A., Pezzuto, J.M., (1993) J. Nat. Prod., 56, p. 30Ito, A., Chai, H.B., Shin, Y.G., Mej, R.M., Gao, Q., Fairchild, C.R., Lane, K.E., Kinghorn, D., (2000) Tetrahedron, 56, p. 6401Pisha, E., Chai, H., Lee, I.-S., Chagwedera, T.E., Farnsworth, N.R., Cordell, G.A., Beecher, C.W.W., Pezzuto, J.M., (1995) Nature, 1, p. 1046Hwang, B.Y., Chai, H., Kardono, L.B.S., Riswan, S., Farnsworth, N.R., Cordell, G.A., Pezzuto, J.M., Kinghorn, A.D., (2003) Phytochemistry, 62, p. 19

    Exploratory Analysis Of Arrabidaea Chica Deoxyanthocyanidins Using Chemometric Methods

    No full text
    A pure, isolated deoxyanthocyanidin, carajurin, and ethanol leaf extract of Arrabidaea chica were dissolved in solutions having five different pH values and submitted to Ultraviolet (UV) radiation and left in the dark for 24 hours. A principal component analysis was used to predict the number of species present in each solution, and ultraviolet spectra were recovered by Multivariate Curve Resolution (MCR). Solutions containing deoxyanthocyanidins present quite stable profiles in general, as compared to common anthocyanidins, which might recommend deoxyanthocyanidins and extracts rich in these compounds as potential alternative natural pigments for food and cosmetics. Copyright © Taylor & Francis Group, LLC.41915921602Barata, L.E.S, Schiozer, A.L, Braga, A.M.P, Schreiber, A.Z, and Fernandes, L.L. 2006. Extratos e composições fitoterápicos a base de Arrabidaea chica para emprego como antifúngico e antibacteriano. Patent Invention. PI0600943-3. Unicamp. Patent deposit: 23/02/2006, INPI, BrasilBeebe, K.R., Pell, R.J., Seasholtz, M.B., (1998) Chemometrics: A Practical Guide, pp. 1-180. , New York: John Wiley & Sons, ppBrouillard, R., Chemical structure of anthocyanins (1982) Anthocyanins as Food Colors, pp. 1-40. , Markakis, P, Ed, London: Academic PressBrouillard, R., The in vivo expression of anthocyanin colour in plants (1983) Phytochem, 22, pp. 1311-1323Devia, B., Llabres, G., Wouters, G., Dupont, L., New 3-deoxyanthocyanidins from leaves of Arrabidaea chica (2002) J. Phyt. Anal, 13, pp. 114-120Francis, F.J., Analysis of anthocyanins (1982) Anthocyanins as Food Colors, pp. 182-205. , Markakis, P, Ed, New York: Academic PressJuan, A., Tauler, R., Chemometrics applied to unravel multicomponent processes and mixtures: Revisiting latest trends in multivariate resolution (2003) Anal. Chem. Acta, 500, pp. 195-210Levi, M.A.B., Scarminio, I.S., Poppi, R.J., Trevisan, M.G., Three-way chemometric method study and UV-vis absorbance for the study of simultaneous degradation of anthocyanins in flowers of the Hibiscus rosa-sinensys species (2004) Talanta, 62, pp. 299-305Março, P.H., Levi, M.A.B., Scarminio, I.S., Poppi, R.J., Trevisan, M.G., Exploratory analysis of simultaneous degradation of anthocyanins in the calyces of flowers of the Hibiscus sabdariffa species by PARAFAC model (2005) Anal. Sci, 21, pp. 1523-1527Março, P.H., Scarminio, I.S., Q-mode curve resolution of UV-vis spectra for structural transformation studies of anthocyanins in acid solutions (2007) Anal. Chem. Acta, 583, pp. 138-146Melo, M.J., Moura, S., Maestri, M., Pina, F., Micelle effects on multistate/multifunctional systems based on photochromic flavylium compounds: The case of luteolinidin (2002) J. Mol. Struct, 612, pp. 245-253Mendieta, J., Díaz-Cruz, M.S., Esteban, M., Tauler, R., Multivariate curve resolution: A possible tool in the detection of intermediate structures in protein folding (1998) Biophys. J, 74, pp. 2876-2888Morita, T., Assumpção, R.M.V., (1981) Manual De Soluções, Reagentes e Solventes, pp. 272-278. , São Paulo, Brasil: Edgard Blücher Ltda, ppRein, M.J., Heinonen, M., Stability and enhancement of berry juice color (2004) J. Agric. Food Chem, 52, pp. 3106-3114Tauler, R., Multivariate curve resolution applied to second-order data (1995) Chemom. Intell. Lab. Syst, 30, pp. 133-146Tauler webpage, , http://www.ub.es/gesq/mcr/mcr.htm, accessed 20 June 2007Terci, D.B.L., Rossi, A.V., Indicadores naturais de pH: Usar papel ou solução? (2002) Quim Nova, 25, pp. 684-688Wissgot, U. and Bortlik, K. 1996. Prospects for new natural food colorants. Trends in Food Sci. Tech., 7: 298-30

    Absolute Configuration Of The Lignan Oleiferins From Virola Oleifera

    No full text
    The assignment of the absolute configuration for the lignan-7-ols, (7R,8S,8′R)-oleiferins AC, was established by acid catalysed Friedel-Crafts-type cyclization for the known 2,7′-cyclolignans and chemical analyses. © 1994.362533534Rodrigues, (1980) Acta Amazonica, 10, p. 83Fernandes, Barata, Ferri, (1993) Phytochemistry, 32, p. 1567Moss, (1989) IUPAC-IUB Joint Commission on Biochemical Nomenclature, 25–22, p. 1Moro, Fernandes, Vieira, Yoshida, Gottlieb, Gottlieb, (1987) Phytochemistry, 26, p. 269Krauss, Taylor, Intramolecular Oxidative Coupling of Aromatic Compounds. III. Monophenolic Substrates (1992) Australian Journal of Chemistry, 45, p. 925Pelter, (1968) J. Chem. Soc. (C), p. 74Bhacca, Stevenson, (1963) J. Org. Chem., 28, p. 1638Hobbs, King, 922. The chemistry of extractives from hardwoods. Part XXIX. Eusiderin, a possible by-product of lignin synthesis in Eusideroxylon zwageri (1960) Journal of the Chemical Society (Resumed), p. 4732Wallace, Porte, Hodges, 275. Lignans from Myristica otoba. The structures of hydroxyotobain and iso-otobain (1963) Journal of the Chemical Society (Resumed), p. 1445Kuo, Lin, Wu, Three new lignans from the nutmeg of Myristica cagayanesis. (1989) CHEMICAL & PHARMACEUTICAL BULLETIN, 37, p. 231
    corecore