16 research outputs found

    Quantitative MR renography using a calibrated internal signal (ERETIC)

    Get PDF
    To measure MR renograms, cortical and medullary kidney signal intensity evolution is followed after contrast agent injection. To obtain an accurate quantitative signal measurement, the use of a reference signal is necessary to correct the potential MRI system variations in time. The ERETIC method (Electronic Reference To access In vivo Concentrations) provides an electronic reference signal. It is synthesized as an amplitude modulated RF pulse applied during the acquisition. The ERETIC method was as precise as the external tube reference method but presents major advantages like its free adjustability (shape, location and magnitude) to the characteristics of the organ studied as well as its not taking room inside the magnet. Even though ERETIC showed a very good intrinsic stability, systems’ variations still affect its signal in the same way as real NMR signals are affected. This method can be easily implemented on any imaging system with two RF channels

    1H-NMR-Based Metabolomic Profiling of CSF in Early Amyotrophic Lateral Sclerosis

    Get PDF
    Background: Pathophysiological mechanisms involved in amyotrophic lateral sclerosis (ALS) are complex and none has identified reliable markers useful in routine patient evaluation. The aim of this study was to analyze the CSF of patients with ALS by 1 H NMR (Nuclear Magnetic Resonance) spectroscopy in order to identify biomarkers in the early stages of the disease, and to evaluate the biochemical factors involved in ALS. Methodology: CSF samples were collected from patients with ALS at the time of diagnosis and from patients without neurodegenerative diseases. One and two-dimensional 1 H NMR analyses were performed and metabolites were quantified by the ERETIC method. We compared the concentrations of CSF metabolites between both groups. Finally, we performed principal component (PCA) and discriminant analyses. Principal Findings: Fifty CSF samples from ALS patients and 44 from controls were analyzed. We quantified 17 metabolites including amino-acids, organic acids, and ketone bodies. Quantitative analysis revealed significantly lower acetate concentrations (p = 0.0002) in ALS patients compared to controls. Concentration of acetone trended higher (p = 0.015), and those of pyruvate (p = 0.002) and ascorbate (p = 0.003) were higher in the ALS group. PCA demonstrated that the pattern of analyzed metabolites discriminated between groups. Discriminant analysis using an algorithm of 17 metabolites reveale

    Quantitative In Vivo Magnetic Resonance Spectroscopy Using Synthetic Signal Injection

    Get PDF
    Accurate conversion of magnetic resonance spectra to quantitative units of concentration generally requires compensation for differences in coil loading conditions, the gains of the various receiver amplifiers, and rescaling that occurs during post-processing manipulations. This can be efficiently achieved by injecting a precalibrated, artificial reference signal, or pseudo-signal into the data. We have previously demonstrated, using in vitro measurements, that robust pseudo-signal injection can be accomplished using a second coil, called the injector coil, properly designed and oriented so that it couples inductively with the receive coil used to acquire the data. In this work, we acquired nonlocalized phosphorous magnetic resonance spectroscopy measurements from resting human tibialis anterior muscles and used pseudo-signal injection to calculate the Pi, PCr, and ATP concentrations. We compared these results to parallel estimates of concentrations obtained using the more established phantom replacement method. Our results demonstrate that pseudo-signal injection using inductive coupling provides a robust calibration factor that is immune to coil loading conditions and suitable for use in human measurements. Having benefits in terms of ease of use and quantitative accuracy, this method is feasible for clinical use. The protocol we describe could be readily translated for use in patients with mitochondrial disease, where sensitive assessment of metabolite content could improve diagnosis and treatment
    corecore