56 research outputs found

    Linear magnetoresistance in commercial n-type silicon due to inhomogeneous doping

    Full text link
    Free electron theory tells us that resistivity is independent of magnetic field. In fact, most observations match the semiclassical prediction of a magnetoresistance that is quadratic at low fields before saturating. However, a non-saturating linear magnetoresistance has been observed in exotic semiconductors such as silver chalcogenides, lightly-doped InSb, N-doped InAs, MnAs-GaAs composites, PrFeAsO, and epitaxial graphene. Here we report the observation of a large linear magnetoresistance in the ohmic regime in commonplace commercial n-type silicon wafer. It is well-described by a classical model of spatially fluctuating donor densities, and may be amplified by altering the aspect ratio of the sample to enhance current-jetting: increasing the width tenfold increased the magnetoresistance at 8 T from 445 % to 4707 % at 35 K. This physical picture may well offer insights into the large magnetoresistances recently observed in n-type and p-type Si in the non-ohmic regime.Comment: submitted to Nature Material

    Scientific, institutional and personal rivalries among Soviet geographers in the late Stalin era

    Get PDF
    Scientific, institutional and personal rivalries between three key centres of geographical research and scholarship (the Academy of Sciences Institute of Geography and the Faculties of Geography at Moscow and Leningrad State Universities) are surveyed for the period from 1945 to the early 1950s. It is argued that the debates and rivalries between members of the three institutions appear to have been motivated by a variety of scientific, ideological, institutional and personal factors, but that genuine scientific disagreements were at least as important as political and ideological factors in influencing the course of the debates and in determining their final outcome

    Hall effect in the vicinity of quantum critical point in Tm1-xYbxB12

    Full text link
    The angular, temperature and magnetic field dependences of Hall resistance roH for the rare-earth dodecaboride solid solutions Tm1-xYbxB12 have been studied in a wide vicinity of the quantum critical point (QCP) xC~0.3. The measurements performed in the temperature range 1.9-300 K on high quality single crystals allowed to find out for the first time in these fcc compounds both an appearance of the second harmonic contribution in ro2H at QCP and its enhancement under the Tm to ytterbium substitution and/or with increase of external magnetic field. When the Yb concentration x increases a negative maximum of a significant amplitude was shown to appear on the temperature dependences of Hall coefficient RH(T) for the Tm1-xYbxB12 compounds. Moreover, a complicated activation type behavior of the Hall coefficient is observed at intermediate temperatures for x>0.5 with activation energies Eg~200K and Ea~55-75K in combination with the sign inversion of RH(T) at low temperatures in the coherent regime. The density of states renormalization effects are analyzed within the variation of Yb concentration and the features of the charge transport in various regimes (charge gap formation, intra-gap manybody resonance and coherent regime) are discussed in detail in Tm1-xYbxB12 solid solutions.Comment: 38 pages including 10 figures, 70 reference

    Concentration of ions in the topside ionosphere as measured onboard the DEMETER satellite: Morphology and dependence on solar and geomagnetic activity

    No full text
    International audienceVariations in concentration of ions H+, He+, and O+ are studied at a height of about 700 km using the data of continuous observations onboard the DEMETER satellite at the decline and in the minimum of solar activity from 2004 to 2008. Latitudinal distributions, seasonal behavior, and irregular variations in ion concentrations and their dependence on solar and geomagnetic activity are considered. Within this altitude range, for the first time an analysis is performed of the dataset of many-year continuous observations in both hemispheres from the equatorial to subauroral latitudes. This made it possible to describe the seasonal and irregular variations of the concentrations of main ion species with better time and spatial resolution than in the available empirical models. The dependence of concentrations of three types of ions on solar and geomagnetic activity is studied at time scales from several days to several years, and it is shown that the anti-phase change in concentrations of O+ and light ions known from publications is partly a result of mutual dependence of solar and geomagnetic activity and is observed only at time scales beginning from several months. At time scales from several days to several weeks, variations in the concentration of O+ and light ions are governed mainly by solar and geomagnetic activity, respectively
    • …
    corecore