18 research outputs found

    Active membranes:3D printing of elastic fibre patterns on pre-stretched textiles

    Get PDF
    There has been a steady growth, over several decades, in the deployment of fabrics in architectural applications; both in terms of quantity and variety of application. More recently 3D printing and additive manufacturing have added to the palette of technologies that designers in architecture and related disciplines can call upon. Here we report on research that brings those two technologies together - the development of active membrane elements and structures. We show how these active membranes have been achieved by laminating 3D printed elasto-plastic fibres onto pre-stretched textile membranes. We report on a set of experiments involving one-, two- and multi-directional geometric arrangements that take TPU 95 and Polypropylene filaments and apply them to lycra textile sheets, to form active composite panels. The process involves a parametrised design, actualized through a particular fabrication process. Our findings document the investigation into mapping between the initial two-dimensional geometries and their resulting three-dimensional doubly-curved forms, as well as accomplishments and products of the resulting, partly serendipitous, design process

    Key Stylistic Features of the Interview as a Genre

    Get PDF
    Молодость. Интеллект. Инициатива : материалы VIII Междунар. науч.-практ. конф. студентов и магистрантов, Витебск, 22 апреля 2020 г. – Витебск : ВГУ имени П. М. Машерова, 2020. – С. 301-303. - Библиогр.: с. 303 (2 назв.)

    Architectural hybrid material composites:computationally enabled techniques to control form generation

    Get PDF
    This paper explores the potential for new hybrid composite material applications in Architecture by re-thinking the role of fabrication in the process of form-generation. Our work presents the development of composite materials system consisting of two flexible materials, which, when acting together, allow for variable states of stiffness and gain structural capacity through the process of fabrication. This morphogenetic act occurs at the moment of making as a result of the symbiotic interaction between the two materials, their geometric arrangement and the fabrication process. Our aim is to investigate a novel approach for integrated design, where the fabrication process of a composite material actuates and enhances material performance. Our findings include a formal vocabulary of initial, pre-stretched geometries and their post-stretched counterpart, as well as comparisons between physical experiments and digital simulations of such composites

    Immunodominant fragments of myelin basic protein initiate T cell-dependent pain

    Get PDF
    AbstractBackgroundThe myelin sheath provides electrical insulation of mechanosensory Aβ-afferent fibers. Myelin-degrading matrix metalloproteinases (MMPs) damage the myelin sheath. The resulting electrical instability of Aβ-fibers is believed to activate the nociceptive circuitry in Aβ-fibers and initiate pain from innocuous tactile stimulation (mechanical allodynia). The precise molecular mechanisms, responsible for the development of this neuropathic pain state after nerve injury (for example, chronic constriction injury, CCI), are not well understood.Methods and resultsUsing mass spectrometry of the whole sciatic nerve proteome followed by bioinformatics analyses, we determined that the pathways, which are classified as the Infectious Disease and T-helper cell signaling, are readily activated in the nerves post-CCI. Inhibition of MMP-9/MMP-2 suppressed CCI-induced mechanical allodynia and concomitant TNF-α and IL-17A expression in nerves. MMP-9 proteolysis of myelin basic protein (MBP) generated the MBP84-104 and MBP68-86 digest peptides, which are prominent immunogenic epitopes. In agreement, the endogenous MBP69-86 epitope co-localized with MHCII and MMP-9 in Schwann cells and along the nodes of Ranvier. Administration of either the MBP84-104 or MBP68-86 peptides into the naïve nerve rapidly produced robust mechanical allodynia with a concomitant increase in T cells and MHCII-reactive cell populations at the injection site. As shown by the genome-wide expression profiling, a single intraneural MBP84-104 injection stimulated the inflammatory, immune cell trafficking, and antigen presentation pathways in the injected naïve nerves and the associated spinal cords. Both MBP84-104-induced mechanical allodynia and characteristic pathway activation were remarkably less prominent in the T cell-deficient athymic nude rats.ConclusionsThese data implicate MBP as a novel mediator of pain. Furthermore, the action of MMPs expressed within 1 day post-injury is critical to the generation of tactile allodynia, neuroinflammation, and the immunodominant MBP digest peptides in nerve. These MBP peptides initiate mechanical allodynia in both a T cell-dependent and -independent manner. In the course of Wallerian degeneration, the repeated exposure of the cryptic MBP epitopes, which are normally sheltered from immunosurveillance, may induce the MBP-specific T cell clones and a self-sustaining immune reaction, which may together contribute to the transition of acute pain into a chronic neuropathic pain state
    corecore