513 research outputs found
The Pros and Cons of Compressive Sensing for Wideband Signal Acquisition: Noise Folding vs. Dynamic Range
Compressive sensing (CS) exploits the sparsity present in many signals to
reduce the number of measurements needed for digital acquisition. With this
reduction would come, in theory, commensurate reductions in the size, weight,
power consumption, and/or monetary cost of both signal sensors and any
associated communication links. This paper examines the use of CS in the design
of a wideband radio receiver in a noisy environment. We formulate the problem
statement for such a receiver and establish a reasonable set of requirements
that a receiver should meet to be practically useful. We then evaluate the
performance of a CS-based receiver in two ways: via a theoretical analysis of
its expected performance, with a particular emphasis on noise and dynamic
range, and via simulations that compare the CS receiver against the performance
expected from a conventional implementation. On the one hand, we show that
CS-based systems that aim to reduce the number of acquired measurements are
somewhat sensitive to signal noise, exhibiting a 3dB SNR loss per octave of
subsampling, which parallels the classic noise-folding phenomenon. On the other
hand, we demonstrate that since they sample at a lower rate, CS-based systems
can potentially attain a significantly larger dynamic range. Hence, we conclude
that while a CS-based system has inherent limitations that do impose some
restrictions on its potential applications, it also has attributes that make it
highly desirable in a number of important practical settings
Sparsity and Incoherence in Compressive Sampling
We consider the problem of reconstructing a sparse signal from a
limited number of linear measurements. Given randomly selected samples of
, where is an orthonormal matrix, we show that minimization
recovers exactly when the number of measurements exceeds where is the number of
nonzero components in , and is the largest entry in properly
normalized: . The smaller ,
the fewer samples needed.
The result holds for ``most'' sparse signals supported on a fixed (but
arbitrary) set . Given , if the sign of for each nonzero entry on
and the observed values of are drawn at random, the signal is
recovered with overwhelming probability. Moreover, there is a sense in which
this is nearly optimal since any method succeeding with the same probability
would require just about this many samples
Measurements design and phenomena discrimination
The construction of measurements suitable for discriminating signal
components produced by phenomena of different types is considered. The required
measurements should be capable of cancelling out those signal components which
are to be ignored when focusing on a phenomenon of interest. Under the
hypothesis that the subspaces hosting the signal components produced by each
phenomenon are complementary, their discrimination is accomplished by
measurements giving rise to the appropriate oblique projector operator. The
subspace onto which the operator should project is selected by nonlinear
techniques in line with adaptive pursuit strategies
Perceptual Compressive Sensing
Compressive sensing (CS) works to acquire measurements at sub-Nyquist rate
and recover the scene images. Existing CS methods always recover the scene
images in pixel level. This causes the smoothness of recovered images and lack
of structure information, especially at a low measurement rate. To overcome
this drawback, in this paper, we propose perceptual CS to obtain high-level
structured recovery. Our task no longer focuses on pixel level. Instead, we
work to make a better visual effect. In detail, we employ perceptual loss,
defined on feature level, to enhance the structure information of the recovered
images. Experiments show that our method achieves better visual results with
stronger structure information than existing CS methods at the same measurement
rate.Comment: Accepted by The First Chinese Conference on Pattern Recognition and
Computer Vision (PRCV 2018). This is a pre-print version (not final version
Increased brain white matter axial diffusivity associated with fatigue, pain and hyperalgesia in Gulf War illness
Background
Gulf War exposures in 1990 and 1991 have caused 25% to 30% of deployed personnel to develop a syndrome of chronic fatigue, pain, hyperalgesia, cognitive and affective dysfunction. Methods
Gulf War veterans (n = 31) and sedentary veteran and civilian controls (n = 20) completed fMRI scans for diffusion tensor imaging. A combination of dolorimetry, subjective reports of pain and fatigue were correlated to white matter diffusivity properties to identify tracts associated with symptom constructs. Results
Gulf War Illness subjects had significantly correlated fatigue, pain, hyperalgesia, and increased axial diffusivity in the right inferior fronto-occipital fasciculus. ROC generated thresholds and subsequent binary regression analysis predicted CMI classification based upon axial diffusivity in the right inferior fronto-occipital fasciculus. These correlates were absent for controls in dichotomous regression analysis. Conclusion
The right inferior fronto-occipital fasciculus may be a potential biomarker for Gulf War Illness. This tract links cortical regions involved in fatigue, pain, emotional and reward processing, and the right ventral attention network in cognition. The axonal neuropathological mechanism(s) explaining increased axial diffusivity may account for the most prominent symptoms of Gulf War Illness
Structured Sparsity: Discrete and Convex approaches
Compressive sensing (CS) exploits sparsity to recover sparse or compressible
signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity
is also used to enhance interpretability in machine learning and statistics
applications: While the ambient dimension is vast in modern data analysis
problems, the relevant information therein typically resides in a much lower
dimensional space. However, many solutions proposed nowadays do not leverage
the true underlying structure. Recent results in CS extend the simple sparsity
idea to more sophisticated {\em structured} sparsity models, which describe the
interdependency between the nonzero components of a signal, allowing to
increase the interpretability of the results and lead to better recovery
performance. In order to better understand the impact of structured sparsity,
in this chapter we analyze the connections between the discrete models and
their convex relaxations, highlighting their relative advantages. We start with
the general group sparse model and then elaborate on two important special
cases: the dispersive and the hierarchical models. For each, we present the
models in their discrete nature, discuss how to solve the ensuing discrete
problems and then describe convex relaxations. We also consider more general
structures as defined by set functions and present their convex proxies.
Further, we discuss efficient optimization solutions for structured sparsity
problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure
Rhinorrhea, cough and fatigue in patients taking sitagliptin
Sitagliptin is a dipeptidyl peptidase-4 (DPP IV, CD26) inhibitor indicated for treatment of Type II diabetes as a second line therapy after metformin. We report fifteen sitagliptin intolerant patients who developed anterior and posterior rhinorrhea, cough, dyspnea, and fatigue. Symptoms typically developed within 1 to 8 weeks of starting, and resolved within 1 week of stopping the drug. Peak expiratory flow rates increased 34% in 8 patients who stopped sitagliptin. Similar changes were found in 4 out of 5 persons who had confirmatory readministration. Chart review identified 17 patients who tolerated sitagliptin and had no symptomatic changes. The sitagliptin intolerant group had higher rates of clinically diagnosed allergic rhinitis (15/15 vs. 6/18; p = 0.00005), Fisher's Exact test) and angiotensin converting enzyme inhibitor - induced cough (6/13 vs. 1/18; p = 0.012). Nasal and inhaled glucocorticoids may control the underlying allergic inflammation and abrogate this new sitagliptin - induced pharmacological syndrome. Potential mucosal and central nervous system mechanisms include disruption of neuropeptides and/or cytokines that rely on DPP IV for activation or inactivation, and T cell dysfunction
On Deterministic Sketching and Streaming for Sparse Recovery and Norm Estimation
We study classic streaming and sparse recovery problems using deterministic
linear sketches, including l1/l1 and linf/l1 sparse recovery problems (the
latter also being known as l1-heavy hitters), norm estimation, and approximate
inner product. We focus on devising a fixed matrix A in R^{m x n} and a
deterministic recovery/estimation procedure which work for all possible input
vectors simultaneously. Our results improve upon existing work, the following
being our main contributions:
* A proof that linf/l1 sparse recovery and inner product estimation are
equivalent, and that incoherent matrices can be used to solve both problems.
Our upper bound for the number of measurements is m=O(eps^{-2}*min{log n, (log
n / log(1/eps))^2}). We can also obtain fast sketching and recovery algorithms
by making use of the Fast Johnson-Lindenstrauss transform. Both our running
times and number of measurements improve upon previous work. We can also obtain
better error guarantees than previous work in terms of a smaller tail of the
input vector.
* A new lower bound for the number of linear measurements required to solve
l1/l1 sparse recovery. We show Omega(k/eps^2 + klog(n/k)/eps) measurements are
required to recover an x' with |x - x'|_1 <= (1+eps)|x_{tail(k)}|_1, where
x_{tail(k)} is x projected onto all but its largest k coordinates in magnitude.
* A tight bound of m = Theta(eps^{-2}log(eps^2 n)) on the number of
measurements required to solve deterministic norm estimation, i.e., to recover
|x|_2 +/- eps|x|_1.
For all the problems we study, tight bounds are already known for the
randomized complexity from previous work, except in the case of l1/l1 sparse
recovery, where a nearly tight bound is known. Our work thus aims to study the
deterministic complexities of these problems
The road to deterministic matrices with the restricted isometry property
The restricted isometry property (RIP) is a well-known matrix condition that
provides state-of-the-art reconstruction guarantees for compressed sensing.
While random matrices are known to satisfy this property with high probability,
deterministic constructions have found less success. In this paper, we consider
various techniques for demonstrating RIP deterministically, some popular and
some novel, and we evaluate their performance. In evaluating some techniques,
we apply random matrix theory and inadvertently find a simple alternative proof
that certain random matrices are RIP. Later, we propose a particular class of
matrices as candidates for being RIP, namely, equiangular tight frames (ETFs).
Using the known correspondence between real ETFs and strongly regular graphs,
we investigate certain combinatorial implications of a real ETF being RIP.
Specifically, we give probabilistic intuition for a new bound on the clique
number of Paley graphs of prime order, and we conjecture that the corresponding
ETFs are RIP in a manner similar to random matrices.Comment: 24 page
- …