17 research outputs found

    Semiclassical Approximations Based On Complex Trajectories.

    Get PDF
    The semiclassical limit of the coherent state propagator involves complex classical trajectories of the Hamiltonian H(u,v) = satisfying u(0) = z' and v(T) = z*. In this work we study mostly the case z' = z. The propagator is then the return probability amplitude of a wave packet. We show that a plot of the exact return probability brings out the quantal images of the classical periodic orbits. Then we compare the exact return probability with its semiclassical approximation for a soft chaotic system with two degrees of freedom. We find two situations where classical trajectories satisfying the correct boundary conditions must be excluded from the semiclassical formula. The first occurs when the contribution of the trajectory to the propagator becomes exponentially large as Planck's over 2 pi goes to zero. The second occurs when the contributing trajectories undergo bifurcations. Close to the bifurcation the semiclassical formula diverges. More interestingly, in the example studied, after the bifurcation, where more than one trajectory satisfying the boundary conditions exist, only one of them in fact contributes to the semiclassical formula, a phenomenon closely related to Stokes lines. When the contributions of these trajectories are filtered out, the semiclassical results show excellent agreement with the exact calculations.6906620

    Semiclassical Tunneling of Wavepackets with Real Trajectories

    Get PDF
    Semiclassical approximations for tunneling processes usually involve complex trajectories or complex times. In this paper we use a previously derived approximation involving only real trajectories propagating in real time to describe the scattering of a Gaussian wavepacket by a finite square potential barrier. We show that the approximation describes both tunneling and interferences very accurately in the limit of small Plank's constant. We use these results to estimate the tunneling time of the wavepacket and find that, for high energies, the barrier slows down the wavepacket but that it speeds it up at energies comparable to the barrier height.Comment: 23 pages, 7 figures Revised text and figure

    Semiclassical Propagation of Wavepackets with Real and Complex Trajectories

    Full text link
    We consider a semiclassical approximation for the time evolution of an originally gaussian wave packet in terms of complex trajectories. We also derive additional approximations replacing the complex trajectories by real ones. These yield three different semiclassical formulae involving different real trajectories. One of these formulae is Heller's thawed gaussian approximation. The other approximations are non-gaussian and may involve several trajectories determined by mixed initial-final conditions. These different formulae are tested for the cases of scattering by a hard wall, scattering by an attractive gaussian potential, and bound motion in a quartic oscillator. The formula with complex trajectories gives good results in all cases. The non-gaussian approximations with real trajectories work well in some cases, whereas the thawed gaussian works only in very simple situations.Comment: revised text, 24 pages, 6 figure

    Semiclassical coherent state propagator for systems with spin

    Full text link
    We derive the semiclassical limit of the coherent state propagator for systems with two degrees of freedom of which one degree of freedom is canonical and the other a spin. Systems in this category include those involving spin-orbit interactions and the Jaynes-Cummings model in which a single electromagnetic mode interacts with many independent two-level atoms. We construct a path integral representation for the propagator of such systems and derive its semiclassical limit. As special cases we consider separable systems, the limit of very large spins and the case of spin 1/2.Comment: 19 pages, no figure

    Coherent State Path Integrals in the Weyl Representation

    Get PDF
    We construct a representation of the coherent state path integral using the Weyl symbol of the Hamiltonian operator. This representation is very different from the usual path integral forms suggested by Klauder and Skagerstan in \cite{Klau85}, which involve the normal or the antinormal ordering of the Hamiltonian. These different representations, although equivalent quantum mechanically, lead to different semiclassical limits. We show that the semiclassical limit of the coherent state propagator in Weyl representation is involves classical trajectories that are independent on the coherent states width. This propagator is also free from the phase corrections found in \cite{Bar01} for the two Klauder forms and provides an explicit connection between the Wigner and the Husimi representations of the evolution operator.Comment: 23 page

    Semiclassical mechanics of a non-integrable spin cluster

    Full text link
    We study detailed classical-quantum correspondence for a cluster system of three spins with single-axis anisotropic exchange coupling. With autoregressive spectral estimation, we find oscillating terms in the quantum density of states caused by classical periodic orbits: in the slowly varying part of the density of states we see signs of nontrivial topology changes happening to the energy surface as the energy is varied. Also, we can explain the hierarchy of quantum energy levels near the ferromagnetic and antiferromagnetic states with EKB quantization to explain large structures and tunneling to explain small structures.Comment: 9 pages. For related works see "http://www.msc.cornell.edu/~clh/clh.html

    Semiclassical Approximations in Phase Space with Coherent States

    Get PDF
    We present a complete derivation of the semiclassical limit of the coherent state propagator in one dimension, starting from path integrals in phase space. We show that the arbitrariness in the path integral representation, which follows from the overcompleteness of the coherent states, results in many different semiclassical limits. We explicitly derive two possible semiclassical formulae for the propagator, we suggest a third one, and we discuss their relationships. We also derive an initial value representation for the semiclassical propagator, based on an initial gaussian wavepacket. It turns out to be related to, but different from, Heller's thawed gaussian approximation. It is very different from the Herman--Kluk formula, which is not a correct semiclassical limit. We point out errors in two derivations of the latter. Finally we show how the semiclassical coherent state propagators lead to WKB-type quantization rules and to approximations for the Husimi distributions of stationary states.Comment: 80 pages, 4 figure
    corecore