1,433 research outputs found

    Symmetry Energy Effects on the Mixed Hadron-Quark Phase at High Baryon Density

    Full text link
    The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Relativistic mean field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Due to the different symmetry term in the two phases, isospin effects appear to be rather significant. With increasing isospin asymmetry the binodal transition line of the (T,\rho_B) diagram is lowered to a region accessible through heavy ion collisions in the energy range of the new planned facilities, e.g. the FAIR/NICA projects. Some observable effects are suggested, in particular an "Isospin Distillation" mechanism with a more isospin asymmetric quark phase, to be seen in charged meson yield ratios, and an onset of quark number scaling of the meson/baryon elliptic flows. The presented isospin effects on the mixed phase appear to be robust with respect to even large variations of the poorly known symmetry term at high baryon density in the hadron phase. The dependence of the results on a suitable treatment of isospin contributions in effective QCD Lagrangian approaches, at the level of explicit isovector parts and/or quark condensates, is finally discussed.Comment: 14 two column pages, 14 figures, new results with other hadron EoS. Accepted for publication in Phys.Rev.

    Analysis of dilepton production in Au+Au collisions at sqrt(s_NN)=200 GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach

    Get PDF
    We address dilepton production in Au+Au collisions at sqrt(s_NN)=200 GeV by employing the parton-hadron-string dynamics (PHSD) off-shell transport approach. Within the PHSD one goes beyond the quasiparticle approximation by solving generalized transport equations on the basis of the off-shell Kadanoff-Baym equations for the Green's functions in the phase-space representation. The approach consistently describes the full evolution of a relativistic heavy-ion collision from the initial hard scatterings and string formation through the dynamical deconfinement phase transition to the quark-gluon plasma (QGP) as well as hadronization and to the subsequent interactions in the hadronic phase. {With partons described in the PHSD by the dynamical quasiparticle model (DQPM) - matched to reproduce lattice QCD results in thermodynamic equilibrium} - we calculate, in particular, the dilepton radiation from partonic interactions through the reactions q+qbar->gamma^*, q+qbar->gamma^*+g and q+g->gamma^*+q (qbar+g->gamma^*+qbar) in the early stage of relativistic heavy-ion collisions. By comparing our results to the data from the PHENIX Collaboration, we study the relative importance of different dilepton production mechanisms and point out the regions in phase space where partonic channels are dominant. Furthermore, explicit predictions are presented for dileptons within the acceptance of the STAR detector system and compared to the preliminary data.Comment: 11 pages, 10 figures. arXiv admin note: substantial text overlap with arXiv:1107.340

    Classification of integrable Weingarten surfaces possessing an sl(2)-valued zero curvature representation

    Full text link
    In this paper we classify Weingarten surfaces integrable in the sense of soliton theory. The criterion is that the associated Gauss equation possesses an sl(2)-valued zero curvature representation with a nonremovable parameter. Under certain restrictions on the jet order, the answer is given by a third order ordinary differential equation to govern the functional dependence of the principal curvatures. Employing the scaling and translation (offsetting) symmetry, we give a general solution of the governing equation in terms of elliptic integrals. We show that the instances when the elliptic integrals degenerate to elementary functions were known to nineteenth century geometers. Finally, we characterize the associated normal congruences

    Nuclear fragmentation: sampling the instabilities of binary systems

    Get PDF
    We derive stability conditions of Asymmetric Nuclear Matter (ANMANM) and discuss the relation to mechanical and chemical instabilities of general two-component systems. We show that the chemical instability may appear as an instability of the system against isoscalar-like rather than isovector-like fluctuations if the interaction between the two constituent species has an attractive character as in the case of ANMANM. This leads to a new kind of liquid-gas phase transition, of interest for fragmentation experiments with radioactive beams.Comment: 4 pages (LATEX), 3 Postscript figures, improved version, added reference

    Constraining the Symmetry Energy: A Journey in the Isospin Physics from Coulomb Barrier to Deconfinement

    Full text link
    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e. to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. Important Iso-EOS effects are stressed. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. New Isospin sensitive observables are also presented for deep-inelastic, fragmentation collisions and Isospin equilibration measurements (Imbalance Ratios). The high density symmetry term can be derived from isospin effects on heavy ion reactions at relativistic energies (few AGeV range), that can even allow a ``direct'' study of the covariant structure of the isovector interaction in the hadron medium. Rather sensitive observables are proposed from collective flows and from pion/kaon production. The possibility of the transition to a mixed hadron-quark phase, at high baryon and isospin density, is finally suggested. Some signatures could come from an expected ``neutron trapping'' effect. The importance of studying violent collisions with radioactive beams from low to relativistic energies is finally stressed.Comment: 15 pages, 5 figures, Int.Workshop on Nuclear Dynamics in Heavy Ion Reactions and Neutron Stars, Beijing Normal Univ. July 07, to appear in Int.Journ.Modern Physics E (2008

    Kepler detection of a new extreme planetary system orbiting the subdwarf-B pulsator KIC10001893

    Full text link
    KIC10001893 is one out of 19 subdwarf-B (sdB) pulsators observed by the Kepler spacecraft in its primary mission. In addition to tens of pulsation frequencies in the g-mode domain, its Fourier spectrum shows three weak peaks at very low frequencies, which is too low to be explained in terms of g modes. The most convincing explanation is that we are seeing the orbital modulation of three Earth-size planets (or planetary remnants) in very tight orbits, which are illuminated by the strong stellar radiation. The orbital periods are P1=5.273, P2=7.807, and P3=19.48 hours, and the period ratios P2/P1=1.481 and P3/P2=2.495 are very close to the 3:2 and 5:2 resonances, respectively. One of the main pulsation modes of the star at 210.68 {\mu}Hz corresponds to the third harmonic of the orbital frequency of the inner planet, suggesting that we see, for the first time in an sdB star, g-mode pulsations tidally excited by a planetary companion. The extreme planetary system that emerges from the Kepler data is very similar to the recent discovery of two Earth-size planets orbiting the sdB pulsator KIC05807616 (Charpinet et al. 2011a).Comment: 6 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Collective Dipole Bremsstrahlung in Fusion Reactions

    Get PDF
    We estimate the dipole radiation emitted in fusion processes. We show that a classical bremsstrahlung approach can account for both the preequilibrium and the thermal photon emission. We give an absolute evaluation of the pre-equilibrium component due to the charge asymmetry in the entrance channel and we study the energy and mass dependence in order to optimize the observation. This dynamical dipole radiation could be a relevant cooling mechanism in the fusion path. We stress the interest in experiments with the new available radioactive beams.Comment: 4 pages (LATEX), 4 Postscript figures, minor text modification

    Water requirements of floodplain rivers and fisheries: existing decision support tools and pathways for development

    Get PDF
    Fisheries / Rivers / Flood plains / Hydrology / Ecology / Models / Decision support tools / Environmental impact assessment / Methodology / Databases

    Signals of dynamical and statistical process from IMF-IMF correlation function

    Get PDF
    In this paper we briefly discuss about a novel application of the IMFIMF correlation function to the physical case of binary massive projectile-like (PLF) splitting for dynamical and statistical breakup/fission in heavy ion collisions at Fermi energy. Theoretical simulations are also shown for comparisons with the data. These preliminary results have been obtained for the reverse kinematics reaction 124Sn+64Ni at 35 AMeV that was studied using the forward part of CHIMERA detector. In that reaction a strong competition between a dynamical and a statistical components and its evolution with the charge asymmetry of the binary break up was already shown. In this work we show that the IMF-IMF correlation function can be used to pin down the timescale of the fragments production in binary fission-like phenomena. We also made simulations with the CoMDII model in order to compare to the experimental IMF-IMF correlation function. In future we plan to extend these studies to different reaction mechanisms and nuclear systems and to compare with different theoretical transport simulations
    corecore