2,598 research outputs found
Visual estimation of joint angles at the elbow
The aim of this study was to assess the accuracy of visual estimation of elbow joint angles. A total of 116observers (93 doctors and 23 physiotherapists) were shown 21 digital images of two arms in predeWned degrees of elbow Xexion on two separate occasions. They estimated the angle of Xexion to the nearest 5°. Only 70.8% of estimates were within +5°, although intra-observer agreement was good among all groups tested (ICC range 0.963-0.983). Orthopaedic consultants and registrars were equivalent and statistically better at estimating the angles compared to senior house officers and physiotherapists (P < 0.001). Compared to the angles of 85 and 90°, all other angles were signifcantly less likely to be estimated to within +5° (P < 0.001). In conclusion, visual estimation of joint angles at the elbow may not be desirable in cases where accurate serial assessment is required for clinical decision making. The use of a goniometer by an agreed standardized protocol is advised
On classification of Poisson vertex algebras
We describe a conjectural classification of Poisson vertex algebras of CFT
type and of Poisson vertex algebras in one differential variable (= scalar
Hamiltonian operators)
Exact solutions for vibrational levels of the Morse potential via the asymptotic iteration method
Exact solutions for vibrational levels of diatomic molecules via the Morse
potential are obtained by means of the asymptotic iteration method. It is shown
that, the numerical results for the energy eigenvalues of are all
in excellent agreement with the ones obtained before. Without any loss of
generality, other states and molecules could be treated in a similar way
Roles of binding elements, FOXL2 domains, and interactions with cJUN and SMADs in regulation of FSHβ.
We previously identified FOXL2 as a critical component in FSHβ gene transcription. Here, we show that mice deficient in FOXL2 have lower levels of gonadotropin gene expression and fewer LH- and FSH-containing cells, but the same level of other pituitary hormones compared to wild-type littermates, highlighting a role of FOXL2 in the pituitary gonadotrope. Further, we investigate the function of FOXL2 in the gonadotrope cell and determine which domains of the FOXL2 protein are necessary for induction of FSHβ transcription. There is a stronger induction of FSHβ reporter transcription by truncated FOXL2 proteins, but no induction with the mutant lacking the forkhead domain. Specifically, FOXL2 plays a role in activin induction of FSHβ, functioning in concert with activin-induced SMAD proteins. Activin acts through multiple promoter elements to induce FSHβ expression, some of which bind FOXL2. Each of these FOXL2-binding sites is either juxtaposed or overlapping with a SMAD-binding element. We determined that FOXL2 and SMAD4 proteins form a higher order complex on the most proximal FOXL2 site. Surprisingly, two other sites important for activin induction bind neither SMADs nor FOXL2, suggesting additional factors at work. Furthermore, we show that FOXL2 plays a role in synergistic induction of FSHβ by GnRH and activin through interactions with the cJUN component of the AP1 complex that is necessary for GnRH responsiveness. Collectively, our results demonstrate the necessity of FOXL2 for proper FSH production in mice and implicate FOXL2 in integration of transcription factors at the level of the FSHβ promoter
Polarization of tightly focused laser beams
The polarization properties of monochromatic light beams are studied. In
contrast to the idealization of an electromagnetic plane wave, finite beams
which are everywhere linearly polarized in the same direction do not exist.
Neither do beams which are everywhere circularly polarized in a fixed plane. It
is also shown that transversely finite beams cannot be purely transverse in
both their electric and magnetic vectors, and that their electromagnetic energy
travels at less than c. The electric and magnetic fields in an electromagnetic
beam have different polarization properties in general, but there exists a
class of steady beams in which the electric and magnetic polarizations are the
same (and in which energy density and energy flux are independent of time).
Examples are given of exactly and approximately linearly polarized beams, and
of approximately circularly polarized beams.Comment: 9 pages, 6 figure
Praziquantel: its use in control of schistosomiasis in sub-Saharan Africa and current research needs
Treatment with praziquantel (PZQ) has become virtually the sole basis of schistosomiasis control in sub-Saharan Africa and elsewhere, and the drug is reviewed here in the context of the increasing rate that it is being used for this purpose. Attention is drawn to our relative lack of knowledge about the mechanisms of action of PZQ at the molecular level, the need for more work to be done on schistosome isolates that have been collected recently from endemic areas rather than those maintained in laboratory conditions for long periods, and our reliance for experimental work mainly on Schistosoma mansoni, little work having been done on S. haematobium. There is no evidence that resistance to PZQ has been induced in African schistosomes as a result of its large-scale use on that continent to date, but there is also no assurance that PZQ and/or schistosomes are in any way unique and that resistant organisms will not be selected as a result of widespread drug usage. The failure of PZQ to produce complete cures in populations given a routine treatment should therefore solicit considerable concern. With few alternatives to PZQ currently available and/or on the horizon, methods to monitor drug-susceptibility in African schistosomes need to be devised and used to help ensure that this drug remains effective for as long a time as possibl
Playing on the boundaries: a childhood across cultural and geographical lines
This is not a conventional paper. It is a personal narrative. It is subjective not only to its author but to the child-self of the author. It is not a detached academic look at a personal history. In fact it could be described more as ‘archaeological’ than historical; an examination of what appears to be a random collection of fragments of a personal history, found in memory and artefacts of a childhood. The telling of the story is an attempt to understand the development and trajectory of an individual identity across geographical, cultural, and religious boundaries. It is not the whole story, but it gives the writer and the reader a few selected pieces of the full picture
The flow of plasma in the solar terrestrial environment
The overall goal of our NASA Theory Program was to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, with the funding from this NASA program, we concentrated on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we developed unique global models that allowed us to study the coupling between the different regions. These results are highlighted in the next section. Another important aspect of our NASA Theory Program concerned the effect that localized 'structure' had on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkland current patterns) or time variations in these input due to storms and substorms. Also, some of the plasma flows that we predicted with our macroscopic models could be unstable, and another one of our goals was to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another goal of our NASA Theory Program was to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This could involve a detailed comparison of kinetic, semi-kinetic, and hydrodynamic predictions for a given polar wind scenario or it could involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations provides insight into when the various models can be used with confidence
- …