840 research outputs found
Are developers fixing their own bugs?: Tracing bug-fixing and bug-seeding committers
This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 IGI GlobalThe process of fixing software bugs plays a key role in the maintenance activities of a software project. Ideally, code ownership and responsibility should be enforced among developers working on the same artifacts, so that those introducing buggy code could also contribute to its fix. However, especially in FLOSS projects, this mechanism is not clearly understood: in particular, it is not known whether those contributors fixing a bug are the same introducing and seeding it in the first place. This paper analyzes the comm-central FLOSS project, which hosts part of the Thunderbird, SeaMonkey, Lightning extensions and Sunbird projects from the Mozilla community. The analysis is focused at the level of lines of code and it uses the information stored in the source code management system. The results of this study show that in 80% of the cases, the bug-fixing activity involves source code modified by at most two developers. It also emerges that the developers fixing the bug are only responsible for 3.5% of the previous modifications to the lines affected; this implies that the other developers making changes to those lines could have made that fix. In most of the cases the bug fixing process in comm-central is not carried out by the same developers than those who seeded the buggy code.This work has been partially funded by the European Commission, under the ALERT project (ICT-258098)
On the Ice Nucleation Spectrum
This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be reconciled, and that is suitable for application in atmospheric modeling studies
Estimating development effort in free/open source software projects by mining software repositories: A case study of OpenStack
Because of the distributed and collaborative nature of free/open source software (FOSS) projects, the development effort invested in a project is usually unknown, even after the software has been released. However, this information is becoming of major interest, especially-but not only-because of the growth in the number of companies for which FOSS has become relevant for their business strategy. In this paper we present a novel approach to estimate effort by considering data from source code management repositories. We apply our model to the OpenStack project, a FOSS project with more than 1,000 authors, in which several tens of companies cooperate. Based on data from its repositories and together with the input from a survey answered by more than 100 developers, we show that the model offers a simple, but sound way of obtaining software development estimations with bounded margins of error.Gregorio Robles, Carlos Cervig on and Jes us M. Gonz alez-Barahona, project SobreSale (TIN2011-28110). and The work of Daniel Izquierdo has been funded in part by the Torres Quevedo program (PTQ-12-05577
Dynamical States of Low Temperature Cirrus
Low ice crystal concentration and sustained in-cloud supersaturation, commonly found in cloud observations at low temperature, challenge our understanding of cirrus formation. Heterogeneous freezing from effloresced ammonium sulfate, glassy aerosol, dust and black carbon are proposed to cause these phenomena; this requires low updrafts for cirrus characteristics to agree with observations and is at odds with the gravity wave spectrum in the upper troposphere. Background temperature fluctuations however can establish a dynamical equilibrium between ice production and sedimentation loss (as opposed to ice crystal formation during the first stages of cloud evolution and subsequent slow cloud decay) that explains low temperature cirrus properties. This newly-discovered state is favored at low temperatures and does not require heterogeneous nucleation to occur (the presence of ice nuclei can however facilitate its onset). Our understanding of cirrus clouds and their role in anthropogenic climate change is reshaped, as the type of dynamical forcing will set these clouds in one of two preferred microphysical regimes with very different susceptibility to aerosol
Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation – monodisperse ice nuclei
We present a parameterization of cirrus cloud formation that computes the ice crystal number and size distribution under the presence of homogeneous and heterogeneous freezing. The parameterization is very simple to apply and is derived from the analytical solution of the cloud parcel equations, assuming that the ice nuclei population is monodisperse and chemically homogeneous. In addition to the ice distribution, an analytical expression is provided for the limiting ice nuclei number concentration that suppresses ice formation from homogeneous freezing. The parameterization is evaluated against a detailed numerical parcel model, and reproduces numerical simulations over a wide range of conditions with an average error of 6±33%. The parameterization also compares favorably against other formulations that require some form of numerical integration
Effects of Volcanic Emissions on Clouds During Kilauea Degassing Events
Aerosols influence Earths radiative balance directly by scattering and absorbing solar radiation, and indirectly by modifying cloud properties. Current scientific consensus indicates that these effects may offset as much as 50% of the warming due to greenhouse gas emissions. Over the last two decades dramatic volcanic events in Hawaii have produced localized aerosol emissions in otherwise clean environments. These are natural experiments" where the aerosol effects on clouds and climate can be partitioned from other effects like meteorology and industrial emissions. Therefore, these events provide a unique opportunity to learn about possible effects of aerosol pollution on climate through cloud modification. In this work we use the version 5 of the NASA Goddard Earth Observing System (GEOS-5) and satellite retrievals to analyze and evaluate the strength of the aerosol indirect effect on liquid and ice clouds during the 2008 and 2018 Kilauea degassing events using different emissions scenarios (0, 1, and 5 actual emissions). Our results suggested that the 2018 event was stronger and more regionally significant with respect to cloud formation process for both liquid and ice clouds, while the 2008 affected local liquid clouds only. GEOS-5 predictions reproduced spatial patterns for all parameters, however better precision could be gained by using more accurate plume parameters for height and ash concentration
Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation – polydisperse ice nuclei
This study presents a comprehensive ice cloud formation parameterization that computes the ice crystal number, size distribution, and maximum supersaturation from precursor aerosol and ice nuclei. The parameterization provides an analytical solution of the cloud parcel model equations and accounts for the competition effects between homogeneous and heterogeneous freezing, and, between heterogeneous freezing in different modes. The diversity of heterogeneous nuclei is described through a nucleation spectrum function which is allowed to follow any form (i.e., derived from classical nucleation theory or from observations). The parameterization reproduces the predictions of a detailed numerical parcel model over a wide range of conditions, and several expressions for the nucleation spectrum. The average error in ice crystal number concentration was −2.0±8.5% for conditions of pure heterogeneous freezing, and, 4.7±21% when both homogeneous and heterogeneous freezing were active. The formulation presented is fast and free from requirements of numerical integration
Aumentar competencias y motivación mediante la participación en competiciones matemáticas
Cabe prestar atención a la desmotivación que los alumnos manifiestan ante el aprendizaje de las Matemáticas por razones como la desconexión manifiesta entre lo que aprenden y el entorno real (Fernández y Pérez, 2011), la dificultad al realizar los distintos problemas surgidos, la falta de metodologías de trabajo donde se intensifique el trabajo en equipo y cooperativo (Hidalgo et al, 2004). Así como la heterogeneidad mostrada en el alumnado actual siendo muchos los niveles presentes en un aula. Las competiciones matemáticas, como Olimpiadas o Pruebas Cangur, y, sobre todo, las sesiones de preparación a éstas, aúnan muchas de las características que adolecen en las actividades de enseñanza-aprendizaje presentadas en el aula de Matemáticas
Pesticide Analysis in Vegetables Using QuEChERS Extraction and Colorimetric Detection
A novel combination of extraction and detection methods is demonstrated for pesticide residue analysis in vegetable samples. Acetylcholinesterase (AChE) inhibition was used as a simple colorimetric test for organophosphates/carbamates (OP/C), and was tested with extracts from the widely-used QuEChERS extraction method. In the absence of pesticide, diluted (50% with water) acetonitrile did not inhibit enzyme activity, demonstrating the compatibility of this extraction solvent with the AChE inhibition test. QuEChERS extraction of chlorpyrifos-spiked tomato, spinach and lettuce samples indicated a high sensitivity to OP/C, with AChE inhibition occurring in the ppb range. The applicability of this method combination was tested by screening tomatoes from 18 different sources, including private gardens, farmer’s market venders, and local supermarkets. Tomatoes from one private garden, three “certified naturally grown” farmer’s market venders and two “organic” supermarket source had AChE inhibition significantly above nominally pesticide-free controls, suggesting the presence of OP/C residue. These residues were likely below levels of health concern, as indicated by lack of complete AChE inhibition, and the absence of inhibition upon sample dilution. This study demonstrates that the combination of QuEChERS extraction and AChE-inhibition detection provides a relatively simple and inexpensive alternative for detection of OP/C in vegetable samples
Protein multi-scale organization through graph partitioning and robustness analysis: Application to the myosin-myosin light chain interaction
Despite the recognized importance of the multi-scale spatio-temporal
organization of proteins, most computational tools can only access a limited
spectrum of time and spatial scales, thereby ignoring the effects on protein
behavior of the intricate coupling between the different scales. Starting from
a physico-chemical atomistic network of interactions that encodes the structure
of the protein, we introduce a methodology based on multi-scale graph
partitioning that can uncover partitions and levels of organization of proteins
that span the whole range of scales, revealing biological features occurring at
different levels of organization and tracking their effect across scales.
Additionally, we introduce a measure of robustness to quantify the relevance of
the partitions through the generation of biochemically-motivated surrogate
random graph models. We apply the method to four distinct conformations of
myosin tail interacting protein, a protein from the molecular motor of the
malaria parasite, and study properties that have been experimentally addressed
such as the closing mechanism, the presence of conserved clusters, and the
identification through computational mutational analysis of key residues for
binding.Comment: 13 pages, 7 Postscript figure
- …