710 research outputs found

    Bose-Einstein condensation in complex networks

    Full text link
    The evolution of many complex systems, including the world wide web, business and citation networks is encoded in the dynamic web describing the interactions between the system's constituents. Despite their irreversible and non-equilibrium nature these networks follow Bose statistics and can undergo Bose-Einstein condensation. Addressing the dynamical properties of these non-equilibrium systems within the framework of equilibrium quantum gases predicts that the 'first-mover-advantage', 'fit-get-rich' and 'winner-takes-all' phenomena observed in competitive systems are thermodynamically distinct phases of the underlying evolving networks

    Topology of evolving networks: local events and universality

    Full text link
    Networks grow and evolve by local events, such as the addition of new nodes and links, or rewiring of links from one node to another. We show that depending on the frequency of these processes two topologically different networks can emerge, the connectivity distribution following either a generalized power-law or an exponential. We propose a continuum theory that predicts these two regimes as well as the scaling function and the exponents, in good agreement with the numerical results. Finally, we use the obtained predictions to fit the connectivity distribution of the network describing the professional links between movie actors.Comment: 13 pages, 3 figure

    Human Dynamics: The Correspondence Patterns of Darwin and Einstein

    Full text link
    While living in different historical era, Charles Darwin (1809-1882) and Albert Einstein (1879-1955) were both prolific correspondents: Darwin sent (received) at least 7,591 (6,530) letters during his lifetime while Einstein sent (received) over 14,500 (16,200). Before email scientists were part of an extensive university of letters, the main venue for exchanging new ideas and results. But were the communication patterns of the pre-email times any different from the current era of instant access? Here we show that while the means have changed, the communication dynamics has not: Darwin's and Einstein's pattern of correspondence and today's electronic exchanges follow the same scaling laws. Their communication belongs, however, to a different universality class from email communication, providing evidence for a new class of phenomena capturing human dynamics.Comment: Supplementary Information available at http://www.nd.edu/~network

    Path finding strategies in scale-free networks

    Full text link
    We numerically investigate the scale-free network model of Barab{\'a}si and Albert [A. L. Barab{\'a}si and R. Albert, Science {\bf 286}, 509 (1999)] through the use of various path finding strategies. In real networks, global network information is not accessible to each vertex, and the actual path connecting two vertices can sometimes be much longer than the shortest one. A generalized diameter depending on the actual path finding strategy is introduced, and a simple strategy, which utilizes only local information on the connectivity, is suggested and shown to yield small-world behavior: the diameter DD of the network increases logarithmically with the network size NN, the same as is found with global strategy. If paths are sought at random, DN0.5D \sim N^{0.5} is found.Comment: 4 pages, final for

    Rank-based model for weighted network with hierarchical organization and disassortative mixing

    Full text link
    Motivated by a recently introduced network growth mechanism that rely on the ranking of node prestige measures [S. Fortunato \emph{et al}., Phys. Rev. Lett. \textbf{96}, 218701 (2006)], a rank-based model for weighted network evolution is studied. The evolution rule of the network is based on the ranking of node strength, which couples the topological growth and the weight dynamics. Both analytical solutions and numerical simulations show that the generated networks possess scale-free distributions of degree, strength, and weight in the whole region of the growth dynamics parameter (α>0\alpha>0). We also characterize the clustering and correlation properties of this class of networks. It is showed that at α=1\alpha=1 a structural phase transition occurs, and for α>1\alpha>1 the generated network simultaneously exhibits hierarchical organization and disassortative degree correlation, which is consistent with a wide range of biological networks.Comment: 4 pages, 5 figure

    Topology of the conceptual network of language

    Full text link
    We define two words in a language to be connected if they express similar concepts. The network of connections among the many thousands of words that make up a language is important not only for the study of the structure and evolution of languages, but also for cognitive science. We study this issue quantitatively, by mapping out the conceptual network of the English language, with the connections being defined by the entries in a Thesaurus dictionary. We find that this network presents a small-world structure, with an amazingly small average shortest path, and appears to exhibit an asymptotic scale-free feature with algebraic connectivity distribution.Comment: 4 pages, 2 figures, Revte

    Fast Community Identification by Hierarchical Growth

    Full text link
    A new method for community identification is proposed which is founded on the analysis of successive neighborhoods, reached through hierarchical growth from a starting vertex, and on the definition of communities as a subgraph whose number of inner connections is larger than outer connections. In order to determine the precision and speed of the method, it is compared with one of the most popular community identification approaches, namely Girvan and Newman's algorithm. Although the hierarchical growth method is not as precise as Girvan and Newman's method, it is potentially faster than most community finding algorithms.Comment: 6 pages, 5 figure

    Hierarchical Organization in Complex Networks

    Full text link
    Many real networks in nature and society share two generic properties: they are scale-free and they display a high degree of clustering. We show that these two features are the consequence of a hierarchical organization, implying that small groups of nodes organize in a hierarchical manner into increasingly large groups, while maintaining a scale-free topology. In hierarchical networks the degree of clustering characterizing the different groups follows a strict scaling law, which can be used to identify the presence of a hierarchical organization in real networks. We find that several real networks, such as the World Wide Web, actor network, the Internet at the domain level and the semantic web obey this scaling law, indicating that hierarchy is a fundamental characteristic of many complex systems

    Effect of the accelerating growth of communications networks on their structure

    Full text link
    Motivated by data on the evolution of the Internet and World Wide Web we consider scenarios of self-organization of the nonlinearly growing networks into free-scale structures. We find that the accelerating growth of the networks establishes their structure. For the growing networks with preferential linking and increasing density of links, two scenarios are possible. In one of them, the value of the exponent γ\gamma of the connectivity distribution is between 3/2 and 2. In the other, γ>2\gamma>2 and the distribution is necessarily non-stationary.Comment: 4 pages revtex, 3 figure
    corecore