116 research outputs found

    Tight Bounds for MIS in Multichannel Radio Networks

    Full text link
    Daum et al. [PODC'13] presented an algorithm that computes a maximal independent set (MIS) within O(log2n/F+lognpolyloglogn)O(\log^2 n/F+\log n \mathrm{polyloglog} n) rounds in an nn-node multichannel radio network with FF communication channels. The paper uses a multichannel variant of the standard graph-based radio network model without collision detection and it assumes that the network graph is a polynomially bounded independence graph (BIG), a natural combinatorial generalization of well-known geographic families. The upper bound of that paper is known to be optimal up to a polyloglog factor. In this paper, we adapt algorithm and analysis to improve the result in two ways. Mainly, we get rid of the polyloglog factor in the runtime and we thus obtain an asymptotically optimal multichannel radio network MIS algorithm. In addition, our new analysis allows to generalize the class of graphs from those with polynomially bounded local independence to graphs where the local independence is bounded by an arbitrary function of the neighborhood radius.Comment: 37 pages, to be published in DISC 201

    Modeling the Influence of Antifreeze Proteins on Three-Dimensional Ice Crystal Melt Shapes using a Geometric Approach

    Get PDF
    The melting of pure axisymmetric ice crystals has been described previously by us within the framework of so-called geometric crystal growth. Nonequilibrium ice crystal shapes evolving in the presence of hyperactive antifreeze proteins (hypAFPs) are experimentally observed to assume ellipsoidal geometries ("lemon" or "rice" shapes). To analyze such shapes we harness the underlying symmetry of hexagonal ice Ih and extend two-dimensional geometric models to three-dimensions to reproduce the experimental dissolution process. The geometrical model developed will be useful as a quantitative test of the mechanisms of interaction between hypAFPs and ice.Comment: 15 pages, 5 figures; Proc. R. Soc. A, Published online before print June 27, 201

    Text2LIVE: Text-Driven Layered Image and Video Editing

    Full text link
    We present a method for zero-shot, text-driven appearance manipulation in natural images and videos. Given an input image or video and a target text prompt, our goal is to edit the appearance of existing objects (e.g., object's texture) or augment the scene with visual effects (e.g., smoke, fire) in a semantically meaningful manner. We train a generator using an internal dataset of training examples, extracted from a single input (image or video and target text prompt), while leveraging an external pre-trained CLIP model to establish our losses. Rather than directly generating the edited output, our key idea is to generate an edit layer (color+opacity) that is composited over the original input. This allows us to constrain the generation process and maintain high fidelity to the original input via novel text-driven losses that are applied directly to the edit layer. Our method neither relies on a pre-trained generator nor requires user-provided edit masks. We demonstrate localized, semantic edits on high-resolution natural images and videos across a variety of objects and scenes.Comment: Project page: https://text2live.github.i

    New insights into ice growth and melting modifications by antifreeze proteins

    Get PDF
    Antifreeze proteins (AFPs) evolved in many organisms, allowing them to survive in cold climates by controlling ice crystal growth. The specific interactions of AFPs with ice determine their potential applications in agriculture, food preservation and medicine. AFPs control the shapes of ice crystals in a manner characteristic of the particular AFP type. Moderately active AFPs cause the formation of elongated bipyramidal crystals, often with seemingly defined facets, while hyperactive AFPs produce more varied crystal shapes. These different morphologies are generally considered to be growth shapes. In a series of bright light and fluorescent microscopy observations of ice crystals in solutions containing different AFPs, we show that crystal shaping also occurs during melting. In particular, the characteristic ice shapes observed in solutions of most hyperactive AFPs are formed during melting. We relate these findings to the affinities of the hyperactive AFPs for the basal plane of ice. Our results demonstrate the relation between basal plane affinity and hyperactivity and show a clear difference in the ice-shaping mechanisms of most moderate and hyperactive AFPs. This study provides key aspects associated with the identification of hyperactive AFPs

    Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth

    Get PDF
    Antifreeze proteins (AFPs) are a subset of ice-binding proteins that control ice crystal growth. They have potential for the cryopreservation of cells, tissues, and organs, as well as for production and storage of food and protection of crops from frost. However, the detailed mechanism of action of AFPs is still unclear. Specifically, there is controversy regarding reversibility of binding of AFPs to crystal surfaces. The experimentally observed dependence of activity of AFPs on their concentration in solution appears to indicate that the binding is reversible. Here, by a series of experiments in temperature-controlled microfluidic devices, where the medium surrounding ice crystals can be exchanged, we show that the binding of hyperactive Tenebrio molitor AFP to ice crystals is practically irreversible and that surface-bound AFPs are sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings rule out theories of AFP activity relying on the presence of unbound protein molecules

    Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria

    Get PDF
    Cold environments are populated by organisms able to contravene deleterious effects of low temperature by diverse adaptive strategies, including the production of ice binding proteins (IBPs) that inhibit the growth of ice crystals inside and outside cells. We describe the properties of such a protein (EfcIBP) identified in the metagenome of an Antarctic biological consortium composed of the ciliate Euplotes focardii and psychrophilic non-cultured bacteria. Recombinant EfcIBP can resist freezing without any conformational damage and is moderately heat stable, with a midpoint temperature of 66.4 °C. Tested for its effects on ice, EfcIBP shows an unusual combination of properties not reported in other bacterial IBPs. First, it is one of the best-performing IBPs described to date in the inhibition of ice recrystallization, with effective concentrations in the nanomolar range. Moreover, EfcIBP has thermal hysteresis activity (0.53 °C at 50 μm) and it can stop a crystal from growing when held at a constant temperature within the thermal hysteresis gap. EfcIBP protects purified proteins and bacterial cells from freezing damage when exposed to challenging temperatures. EfcIBP also possesses a potential N-terminal signal sequence for protein transport and a DUF3494 domain that is common to secreted IBPs. These features lead us to hypothesize that the protein is either anchored at the outer cell surface or concentrated around cells to provide survival advantage to the whole cell consortium

    Priority diffusion model in lattices and complex networks

    Full text link
    We introduce a model for diffusion of two classes of particles (AA and BB) with priority: where both species are present in the same site the motion of AA's takes precedence over that of BB's. This describes realistic situations in wireless and communication networks. In regular lattices the diffusion of the two species is normal but the BB particles are significantly slower, due to the presence of the AA particles. From the fraction of sites where the BB particles can move freely, which we compute analytically, we derive the diffusion coefficients of the two species. In heterogeneous networks the fraction of sites where BB is free decreases exponentially with the degree of the sites. This, coupled with accumulation of particles in high-degree nodes leads to trapping of the low priority particles in scale-free networks.Comment: 5 pages, 3 figure

    Distribution and Extinction of Ungulates during the Holocene of the Southern Levant

    Get PDF
    BACKGROUND: The southern Levant (Israel, Palestinian Authority and Jordan) has been continuously and extensively populated by succeeding phases of human cultures for the past 15,000 years. The long human impact on the ancient landscape has had great ecological consequences, and has caused continuous and accelerating damage to the natural environment. The rich zooarchaeological data gathered at the area provide a unique opportunity to reconstruct spatial and temporal changes in wild species distribution, and correlate them with human demographic changes. METHODOLOGY: Zoo-archaeological data (382 animal bone assemblages from 190 archaeological sites) from various time periods, habitats and landscapes were compared. The bone assemblages were sorted into 12 major cultural periods. Distribution maps showing the presence of each ungulate species were established for each period. CONCLUSIONS: The first major ungulate extinction occurred during the local Iron Age (1,200-586 BCE), a period characterized by significant human population growth. During that time the last of the largest wild ungulates, the hartebeest (Alcelaphus buselaphus), aurochs (Bos primigenius) and the hippopotamus (Hippopotamus amphibius) became extinct, followed by a shrinking distribution of forest-dwelling cervids. A second major wave of extinction occurred only in the 19th and 20th centuries CE. Furthermore, a negative relationship was found between the average body mass of ungulate species that became extinct during the Holocene and their extinction date. It is thus very likely that the intensified human activity through habitat destruction and uncontrolled hunting were responsible for the two major waves of ungulate extinction in the southern Levant during the late Holocene

    SoK: A Consensus Taxonomy in the Blockchain Era

    Get PDF
    Consensus (a.k.a. Byzantine agreement) is arguably one of the most fundamental problems in distributed systems, playing also an important role in the area of cryptographic protocols as the enabler of a (secure) broadcast functionality. While the problem has a long and rich history and has been analyzed from many different perspectives, recently, with the advent of blockchain protocols like Bitcoin, it has experienced renewed interest from a much wider community of researchers and has seen its application expand to various novel settings. One of the main issues in consensus research is the many different variants of the problem that exist as well as the various ways the problem behaves when different setup, computational assumptions and network models are considered. In this work we perform a systematization of knowledge in the landscape of consensus research starting with the original formulation in the early 1980s up to the present blockchain-based new class of consensus protocols. Our work is a roadmap for studying the consensus problem under its many guises, classifying the way it operates in many settings and highlighting the exciting new applications that have emerged in the blockchain era
    corecore