26 research outputs found

    Field survey for major infectious and reproductive diseases responsible for losses and low productivity of ruminants amongst the Nigerian Fulani pastoralists

    Get PDF
    Background: Animal disease constitutes a major hurdle to improved livelihoods in rural Nigeria through the challenges of loss of productivity, livestock morbidity and mortality including reproductive losses. In order to design and implement impactful interventions, baseline data on the causes of such losses are needed. Therefore, the objective of the present study was to carry out targeted field surveys, including interviews with ruminant farmers, veterinary professionals and other stakeholders in livestock farming to establish the main causes of disease and mortality including abortions in cattle and small ruminants (SR).Methods: Northern Nigeria was selected because the majority of the nation’s ruminants belong to pastoralists who are primarily resident in this region. Seven states; Bauchi, Kaduna, Kano, Nasarawa, Niger, Sokoto and Zamfara states were surveyed. The responses were collated and a comprehensive descriptive analysis was carried out.Results: Average cattle herd sizes ranged from 28 in Zamfara to 103 in Nasarawa; and from 27 in Kano to 128 in Sokoto for SR. In cattle, Trypanosomosis (with 4.27% mortality rate), foot and mouth disease (3.81%), nutritional insufficiency (1.93%) and contagious bovine pleuropneumonia (CBPP; 1.44%) were the top four diseases/health problems that resulted in the highest mortality due to diseases within each state surveyed. For SR, trypanosomosis (with 6.85% mortality rate), Peste des Petits Ruminants (4.99%), orf (3.06%), foot rot (2.97%) and foot and mouth disease (2.94%) were the most important diseases responsible for the highest number of mortalities and culling for disease.Conclusions: The study revealed that there are significant losses via mortalities due to the occurrence of disease amongst the ruminant populations countrywide, as evidenced by the high overall mortality rates of both cattle (15.3%) and small ruminants (30.9%) from various diseases. Also, reproductive losses of 8.7% and 16.6% in cattle and SR, respectively, were recorded amongst the farmers involve

    Developing One Health surveillance systems

    Get PDF
    The health of humans, domestic and wild animals, plants, and the environment are inter-dependent. Global anthropogenic change is a key driver of disease emergence and spread and leads to biodiversity loss and ecosystem function degradation, which are themselves drivers of disease emergence. Pathogen spill-over events and subsequent disease outbreaks, including pandemics, in humans, animals and plants may arise when factors driving disease emergence and spread converge. One Health is an integrated approach that aims to sustainably balance and optimize human, animal and ecosystem health. Conventional disease surveillance has been siloed by sectors, with separate systems addressing the health of humans, domestic animals, cultivated plants, wildlife and the environment. One Health surveillance should include integrated surveillance for known and unknown pathogens, but combined with this more traditional disease-based surveillance, it also must include surveillance of drivers of disease emergence to improve prevention and mitigation of spill-over events. Here, we outline such an approach, including the characteristics and components required to overcome barriers and to optimize an integrated One Health surveillance system.</p

    Developing One Health surveillance systems

    Get PDF
    The health of humans, domestic and wild animals, plants, and the environment are inter-dependent. Global anthropogenic change is a key driver of disease emergence and spread and leads to biodiversity loss and ecosystem function degradation, which are themselves drivers of disease emergence. Pathogen spill-over events and subsequent disease outbreaks, including pandemics, in humans, animals and plants may arise when factors driving disease emergence and spread converge. One Health is an integrated approach that aims to sustainably balance and optimize human, animal and ecosystem health. Conventional disease surveillance has been siloed by sectors, with separate systems addressing the health of humans, domestic animals, cultivated plants, wildlife and the environment. One Health surveillance should include integrated surveillance for known and unknown pathogens, but combined with this more traditional disease-based surveillance, it also must include surveillance of drivers of disease emergence to improve prevention and mitigation of spill-over events. Here, we outline such an approach, including the characteristics and components required to overcome barriers and to optimize an integrated One Health surveillance system

    Randomized controlled field trial to assess the immunogenicity and safety of rift valley fever clone 13 vaccine in livestock

    Get PDF
    BACKGROUND:Although livestock vaccination is effective in preventing Rift Valley fever (RVF) epidemics, there are concerns about safety and effectiveness of the only commercially available RVF Smithburn vaccine. We conducted a randomized controlled field trial to evaluate the immunogenicity and safety of the new RVF Clone 13 vaccine, recently registered in South Africa. METHODS:In a blinded randomized controlled field trial, 404 animals (85 cattle, 168 sheep, and 151 goats) in three farms in Kenya were divided into three groups. Group A included males and non-pregnant females that were randomized and assigned to two groups; one vaccinated with RVF Clone 13 and the other given placebo. Groups B included animals in 1st half of pregnancy, and group C animals in 2nd half of pregnancy, which were also randomized and either vaccinated and given placebo. Animals were monitored for one year and virus antibodies titers assessed on days 14, 28, 56, 183 and 365. RESULTS:In vaccinated goats (N = 72), 72% developed anti-RVF virus IgM antibodies and 97% neutralizing IgG antibodies. In vaccinated sheep (N = 77), 84% developed IgM and 91% neutralizing IgG antibodies. Vaccinated cattle (N = 42) did not develop IgM antibodies but 67% developed neutralizing IgG antibodies. At day 14 post-vaccination, the odds of being seropositive for IgG in the vaccine group was 3.6 (95% CI, 1.5 - 9.2) in cattle, 90.0 (95% CI, 25.1 - 579.2) in goats, and 40.0 (95% CI, 16.5 - 110.5) in sheep. Abortion was observed in one vaccinated goat but histopathologic analysis did not indicate RVF virus infection. There was no evidence of teratogenicity in vaccinated or placebo animals. CONCLUSIONS:The results suggest RVF Clone 13 vaccine is safe to use and has high (>90%) immunogenicity in sheep and goats but moderate (> 65%) immunogenicity in cattle

    Developing One Health surveillance systems

    Get PDF
    DATA AVAILABILITY : No data was used for the research described in the article.The health of humans, domestic and wild animals, plants, and the environment are inter-dependent. Global anthropogenic change is a key driver of disease emergence and spread and leads to biodiversity loss and ecosystem function degradation, which are themselves drivers of disease emergence. Pathogen spill-over events and subsequent disease outbreaks, including pandemics, in humans, animals and plants may arise when factors driving disease emergence and spread converge. One Health is an integrated approach that aims to sustainably balance and optimize human, animal and ecosystem health. Conventional disease surveillance has been siloed by sectors, with separate systems addressing the health of humans, domestic animals, cultivated plants, wildlife and the environment. One Health surveillance should include integrated surveillance for known and unknown pathogens, but combined with this more traditional disease-based surveillance, it also must include surveillance of drivers of disease emergence to improve prevention and mitigation of spill-over events. Here, we outline such an approach, including the characteristics and components required to overcome barriers and to optimize an integrated One Health surveillance system.https://www.elsevier.com/locate/onehlthj2024Medical VirologySDG-03:Good heatlh and well-bein

    Prevention of zoonotic spillover : from relying on response to reducing the risk at source

    Get PDF
    BACKGROUND AND CONTEXT : The devastating impact of Coronavirus Disease 2019 (COVID-19) on human health globally has prompted extensive discussions on how to better prepare for and safeguard against the next pandemic. Zoonotic spillover of pathogens from animals to humans is recognized as the predominant cause of emerging infectious diseases and as the primary cause of recent pandemics. This spillover risk is increased by a range of factors (called drivers) that impact the nature, frequency, and intensity of contact between humans and wild animals. Many of these drivers are related to human impact, for example, deforestation and changes in land use and agricultural practices. While it is clear that the triad of prevention-preparedness-response (P-P-R) is highly relevant, there is much discussion on which of these 3 strategic activities in the field of emerging infectious disease should be prioritized and how to optimally target resources. For this, it is important to understand the scope of the respective activity and the consequences of prioritization. Already, the World Bank Pandemic Fund and forthcoming global Pandemic instrument negotiated by the World Health Organization (WHO) appear primarily focused on the early detection, and reaction to the appearance of human illnesses, often with explicit focus only on action to be taken once pathogen spillover and spread have occurred. Strategies to reduce the probability of spillover events are under-prioritized and underutilized, as highlighted by recent infectious disease crises such as Ebola and Mpox epidemics, and have been lost in overall preparedness discussions and recovery financing. This “more of the same” focus suggests that it is politically more expedient to allocate financial resources to deal with a problem once it has arisen, rather than taking the steps necessary to reduce the risk of it occurring in the first place. It is often claimed that allocating resources to prevent something from happening is politically difficult as the value of prevention is largely “invisible” (prevention paradox) or it will take a long time to show effects. However, there are now several communications highlighting the economic benefits of prevention of spillover. If taken, actions to prevent spillover are estimated at 10to31billionperyearglobally,asacumulativeinvestmentfrompreventiveactionsachievablebyspecificindustries.However,addressingthedriversofpathogenspilloverthroughaOneHealthapproachhassignificantsubsequenteconomicco−benefits;forexample,reducingdeforestationisestimatedtocreate10 to 31 billion per year globally, as a cumulative investment from preventive actions achievable by specific industries. However, addressing the drivers of pathogen spillover through a One Health approach has significant subsequent economic co-benefits; for example, reducing deforestation is estimated to create 4 billion per year in social benefits from reduced greenhouse gas emissions. COVID-19 has demonstrated the immense burden of a pandemic, including significant mortality resulting in economic recession, with the global economy contracting by 4.4 percent in 2020. The expected economic losses from this pandemic are estimated at nearly 14trillionupto2024.Theselossesparallelthoseincurredbyotherinfectiousdiseaseemergencies,includingthe2003SARSpandemicwithanestimatedeconomiclossof14 trillion up to 2024. These losses parallel those incurred by other infectious disease emergencies, including the 2003 SARS pandemic with an estimated economic loss of 52 billion; the Ebola virus disease outbreak in West Africa in 2014 to 2016 with a GDP loss of 2.8to32.6billionandthecomprehensiveeconomicandsocialburdenestimatedtobe2.8 to 32.6 billion and the comprehensive economic and social burden estimated to be 53.19 billion; and the 2015 to 2016 Zika virus disease outbreak with an estimated loss in the United States, Caribbean, and Latin America of $20 billion. If invested in, prevention strategies would reduce the likelihood of another pandemic substantially and likely generate sufficient return on investment over time while also having the potential to generate substantial co-benefits. Prevention is already valued in other sectors: policymakers and industries have led on prevention in other areas, such as expenditure on counter-terrorism, driving laws and insurance incentives to reduce the frequency of traffic accidents, on the nuclear deterrent, and in some cases on flood prevention and other water management measures, exemplifying a political willingness to spend vast sums of money to preempt a harmful event in certain areas or circumstances, but not on pandemic prevention.https://journals.plos.org/plospathogens/am2024Medical VirologySDG-03:Good heatlh and well-bein
    corecore