22 research outputs found

    Probabilistic Forecasting of Hydraulic Fracturing Induced Seismicity Using an Injection-Rate Driven ETAS Model

    Get PDF
    The development of robust forecasts of human‐induced seismicity is highly desirable to mitigate the effects of disturbing or damaging earthquakes. We assess the performance of a well‐established statistical model, the epidemic‐type aftershock sequence (ETAS) model, with a catalog of ∌93,000 microearthquakes observed at the Preston New Road (PNR, United Kingdom) unconventional shale gas site during, and after hydraulic fracturing of the PNR‐1z and PNR‐2 wells. Because ETAS was developed for slower loading rate tectonic seismicity, to account for seismicity caused by pressurized fluid, we also generate three modified ETAS with background rates proportional to injection rates. We find that (1) the standard ETAS captures low seismicity between and after injections but is outperformed by the modified model during high‐seismicity periods, and (2) the injection‐rate driven ETAS substantially improves when the forecast is calibrated on sleeve‐specific pumping data. We finally forecast out‐of‐sample the PNR‐2 seismicity using the average response to injection observed at PNR‐1z, achieving better predictive skills than the in‐sample standard ETAS. The insights from this study contribute toward producing informative seismicity forecasts for real‐time decision making and risk mitigation techniques during unconventional shale gas development

    Transtensional deformation of Montserrat revealed by shear wave splitting

    Get PDF
    Here we investigate seismic anisotropy of the upper crust in the vicinity of SoufriĂšre Hills volcano using shear wave splitting (SWS) analysis from volcano-tectonic (VT) events. SoufriĂšre Hills, which is located on the island of Montserrat in the Lesser Antilles, became active in 1995 and has been erupting ever since with five major phases of extrusive activity. We use data recorded on a network of seismometers between 1996 and 2007 partially spanning three extrusive phases. Shear-wave splitting in the crust is often assumed to be controlled either by structural features, or by stress aligned cracks. In such a case the polarization of the fast shear wave (ϕ) would align parallel to the strike of the structure, or to the maximum compressive stress direction. Previous studies analyzing SWS in the region using regional earthquakes observed temporal variations in ϕ which were interpreted as being caused by stress perturbations associated with pressurization of a dyke. Our analysis, which uses much shallower sources and thus only samples the anisotropy of the upper few kilometres of the crust, shows no clear temporal variation. However, temporal effects cannot be ruled out, as large fluctuations in the rate of VT events over the course of the study period as well as changes in the seismic network configuration make it difficult to assess. Average delay times of approximately 0.2 s, similar in magnitude to those reported for much deeper slab events, suggest that the bulk of the anisotropy is in the shallow crust. We observe clear spatial variations in anisotropy which we believe are consistent with structurally controlled anisotropy resulting from a left-lateral transtensional array of faults which crosses the volcanic complex

    Seismicity induced by longwall coal mining at the Thoresby Colliery, Nottinghamshire, U.K.

    Get PDF
    The United Kingdom has a long history of deep coal mining, and numerous cases of mining-induced seismicity have been recorded over the past 50 yr. In this study, we examine seismicity induced by longwall mining at one of the United Kingdom’s last deep coal mines, the Thoresby Colliery, Nottinghamshire. After public reports of felt seismicity in late 2013 a local seismic monitoring network was installed at this site, which provided monitoring from February to October 2014. This array recorded 305 seismic events, which form the basis of our analysis. Event locations were found to closely track the position of the mining face within the Deep Soft Seam, with most events occurring up to 300 m ahead of the face position. This indicates that the seismicity is being directly induced by the mining, as opposed to being caused by activation of pre-existing tectonic features by stress transfer. However, we do not observe correlation between the rate of excavation and the rate of seismicity, and only a small portion of the overall deformation is being released as seismic energy. Event magnitudes do not follow the expected Gutenberg–Richter distribution. Instead, the observed magnitude distributions can be reproduced if a truncated power-law distribution is used to simulate the rupture areas. The best-fitting maximum rupture areas correspond to the distances between the Deep Soft Seam and the seams that over- and underlie it, which have both previously been excavated. Our inference is that the presence of a rubble-filled void (or goaf) where these seams have been removed is preventing the growth of larger rupture areas. Source mechanism analysis reveals that most events consist of dip-slip motion along near-vertical planes that strike parallel to the orientation of the mining face. These mechanisms are consistent with the expected deformation that would occur as a longwall panel advances, with the under- and overburdens moving upwards and downwards respectively to fill the void created by mining. This further reinforces our conclusion that the events are directly induced by the mining process. Similar mechanisms have been observed during longwall mining at other sites

    Site selection strategy for environmental monitoring in connection with shale-gas exploration: Vale of Pickering, Yorkshire and Fylde, Lancashire

    Get PDF
    This report outlines the strategies for site selection adopted as part of a baseline environmental monitoring investigation in connection with shale-gas exploration and development in the Vale of Pickering, North Yorkshire. The project forms an extension to an ongoing baseline investigation being carried out in the Fylde, Lancashire, and the current project incorporates an air-quality monitoring component that was not within the original remit of the Fylde study. The DECC-funded investigation is led by the British Geological Survey, and is being carried out as a collaboration with the Universities of Birmingham, Bristol, Liverpool, Manchester and York (National Centre for Atmospheric Science, NCAS) and Public Health England (PHE). The project incorporates work packages in monitoring of water quality, air quality and greenhouse gases, soil gas, ground motion and seismicity, and air radon and is being carried out over the period September 2015 to March 2016. Site selection is a critical consideration in setting up a monitoring programme as chosen sites need to be representative of conditions to be tested. While sites will necessarily be subject to practical constraints (land access agreements, existing infrastructure, geological conditions, cost implications etc), site selection has a large part to play in ensuring collection of quantifiable, unbiased data. This report sets out the rationale for site selection in each of the work packages and the steps taken to ensure defensible site-selection decisions and to minimise the impact of practical constraints

    Hydraulic fracturing‐induced seismicity

    Get PDF
    Hydraulic fracturing (HF) is a technique that is used for extracting petroleum resources from impermeable host rocks. In this process, fluid injected under high pressure causes fractures to propagate. This technique has been transformative for the hydrocarbon industry, unlocking otherwise stranded resources; however, environmental concerns make HF controversial. One concern is HF‐induced seismicity, since fluids driven under high pressure also have the potential to reactivate faults. Controversy has inevitably followed these HF‐induced earthquakes, with economic and human losses from ground shaking at one extreme and moratoriums on resource development at the other. Here, we review the state of knowledge of this category of induced seismicity. We first cover essential background information on HF along with an overview of published induced earthquake cases to date. Expanding on this, we synthesize the common themes and interpret the origin of these commonalities, which include recurrent earthquake swarms, proximity to well bore, rapid response to stimulation, and a paucity of reported cases. Next, we discuss the unanswered questions that naturally arise from these commonalities, leading to potential research themes: consistent recognition of cases, proposed triggering mechanisms, geologically susceptible conditions, identification of operational controls, effective mitigation efforts, and science‐informed regulatory management. HF‐induced seismicity provides a unique opportunity to better understand and manage earthquake rupture processes; overall, understanding HF‐induced earthquakes is important in order to avoid extreme reactions in either direction

    Local magnitude discrepancies for near‐event receivers: implications for the U.K. Traffic‐Light Scheme

    Get PDF
    Local seismic magnitudes provide a practical and efficient scale for the implementation of regulation designed to manage the risk of induced seismicity, such as Traffic‐Light Schemes (TLS). We demonstrate that significant magnitude discrepancies (up to a unit higher) occur between seismic events recorded on nearby stations (<5  km) compared with those at greater distances. This is due to the influence of sedimentary layers, which are generally lower in velocity and more attenuating than the underlying crystalline basement rocks, and requires a change in the attenuation term of the ML scale. This has a significant impact on the United Kingdom’s (U.K.) hydraulic fracturing TLS, whose red light is set at ML 0.5. Because the nominal detectability of the U.K. network is ML 2, this scheme will require the deployment of monitoring stations in close proximity to well sites. Using data collected from mining events near New Ollerton, Nottinghamshire, we illustrate the effects that proximity has on travel path velocities and attenuation, then perform a damped least‐squares inversion to determine appropriate constants within the ML scale. We show that the attenuation term needs to increase from 0.00183 to 0.0514 and demonstrate that this higher value is representative of a ray path within a slower more attenuating sedimentary layer compared with the continental crust. We therefore recommend that the magnitude scale ML=log(A)+1.17log(r)+0.0514r−3.0 should be used when local monitoring networks are within 5 km of the event epicenters

    An improved framework for discriminating seismicity induced by industrial activities from natural earthquakes

    Get PDF
    Heightened concerns regarding induced seismicity necessitate robust methods to assess whether detected earthquakes near industrial sites are natural or induced by the industrial activity. These assessments are required rapidly, which often precludes detailed modeling of fluid pressures and the geomechanical response of the reservoir and nearby faults. Simple question‐based assessment schemes in current use are a useful tool but suffer from several shortcomings: they do not specifically address questions regarding whether available evidence supports the case for natural seismicity; they give all questions equal weighting regardless of the relative influence of different factors; they are not formulated to account for ambiguous or uncertain evidence; and the final outcomes can be difficult to interpret. We propose a new framework that addresses these shortcomings by assigning numerical scores to each question, with positive values for answers that support induced seismicity and negative values for responses favoring natural seismicity. The score values available for each question reflect the relative importance of the different questions, and for each question the absolute value of the score is modulated according to the degree of uncertainty. The final outcome is a score, the induced assessment ratio, either positive or negative (or zero), that reflects whether events were induced or natural. A second score, the evidence strength ratio, is assigned that characterizes the strength of the available evidence, expressed as the ratio of the maximum score possible with the available evidence relative to the maximum score that could be obtained if all desired data were available at a site. We demonstrate this approach by application to two case studies in the United Kingdom, one widely regarded as a case of induced seismicity, and the other more likely to be a series of tectonic earthquakes

    SN-CAST: seismic network capability assessment software tool for regional networks-examples from Ireland

    Get PDF
    Event detection capability plays an important role in the operation of seismic observatories and temporary networks. The magnitude threshold for the detection of seismic events with a given network geometry is frequently derived from the observed magnitude of completeness. However, the latter might be unknown for regions that have not been monitored previously or where the observed seismicity rate is low. We present the open-source Python program SN-CAST with which the geographical distribution of event detection capability can be calculated as a function of station coordinates and station ambient noise amplitudes. The method employs the local magnitude scale, and hence is mainly applicable to regional networks with an aperture of less than about 1000 km. The attenuation characteristics of the study region need to be derived independently or be known a priori. SN-CAST can easily be employed to determine network performance in quasi real-time if station data streams are available. It can also be used for designing the geometry of new networks or assessing the effect of adding or removing stations from an existing network. We present examples from the Irish National Seismic Network (https://www.insn.ie), which operates in a region of low seismicity and large variations in ocean and wind-generated seismic noise. The seismicity in Ireland is too low to allow the calculation of a magnitude of completeness for comparison with the derived capability maps. However, the maps are in good agreement with the location and magnitude of detected local and regional earthquakes demonstrating that SN-CAST is a reliable tool for assessing the detection capability of seismic networks
    corecore