7 research outputs found

    Cardiac Shock Wave Therapy Attenuates H9c2 Myoblast Apoptosis by Activating the AKT Signal Pathway

    No full text
    Background: Previous studies have demonstrated that Cardiac Shock Wave Therapy (CSWT) improves myocardial perfusion and cardiac function in a porcine model of chronic myocardial ischemia and also ameliorates myocardial ischemia in patients with severe coronary artery disease (CAD). Apoptosis plays a key role in ischemic myocardial pathogenesis. However, it remains unclear whether CSWT is beneficial for ischemia/hypoxia (I/H)-induced myocardial cell apoptosis and by which mechanism CSWT could improve heart function. We put forward the hypothesis that CSWT might protect heart function during ischemia/hypoxia by decreasing apoptosis. Methods: We generated ischemia/hypoxia (I/H)-induced apoptosis in the H9c2 myoblast cell line to examine the CSWT function and possible mechanisms. H9c2 cells were treated under hypoxic serum-starved conditions for 24 h and then treated with or without CSWT (500 shots, 0.06, 0.09, 0.12mJ/mm2). The apoptotic cell rate was determined by flow cytometry assay, cell viability was examined by the MTT assay, nuclear fragmentation was detected by Hoechst 33342 staining, and the mitochondrial-mediated intrinsic pathway of apoptosis was assessed by the expression of Bax and Bcl-2 protein and Caspase3 activation. Results: First, apoptosis could be induced by ischemia/hypoxia in H9c2 cells. Second, CSWT attenuates the cell death and decreases the H9c2 cell apoptosis rate induced by ischemia and hypoxia. Third, CSWT suppresses the expression of apoptosis molecules that regulate the intrinsic pathway of apoptosis in H9c2 cells. Fourth, CSWT increases the phosphorylation of AKT, which indicates the activation of the PI3K-AKT pathway. Conclusions: These results indicate that CSWT exerts a protective effect against I/H-induced cell death, potentially by preventing the activation of components of the mitochondrial-dependent intrinsic apoptotic pathway. We also demonstrate that the PI3K-Akt pathway may be involved in the CSWT effects on apoptosis

    A practical pressure measuring method for the upper urinary tract during ureteroscopy

    No full text
    Purpose: The purpose of this study was to develop and test a method for measuring pressure in the upper urinary tract during ureteroscopic operations and to evaluate its efficacy and clinical significance. Methods: A total of 44 patients, each with a ureteral calculus in the proximal ureteral segment, were enrolled in the study group: 21 patients with an acute and 23 with a chronic obstruction. The ureteroscope was passed forward to the upper segment of the obstructed ureter immediately after the calculus was broken and the intraluminal ureteral pressure was then transmitted along with the irrigant flow (0.9% sodium chloride). Results: The mean ureteral pressures of the acute obstruction subgroup, the chronic obstruction subgroup and the control group were 74.5 mmHg (22-180 mmHg), 32.5 mmHg (9-53 mmHg) and 10.2 mmHg (8-13 mmHg), respectively. A significant correlation was found between ureteral pressure and the following indexes: the duration of the obstruction (r=0.985), the diameter of the ureter above the calculus (r=0.878) and the depth of the hydronephrosis of the renal pelvis (r=0.862). No associations were observed between the pressure and the serum creatinine level (r=0.214) or the urinary leukocyte count (r=0.047). The intraluminal pressure correlated with the glomerular flow rate (GFR) of the affected kidney (r =0.975, P =0.001). Conclusions: This new method is non-invasive, practical and reproducible. Measuring the intraluminal pressure of the ureter can provide a valuable index to quantify the severity of the obstruction of the upper urinary tract, which is helpful for the prediction of the affected renal function prognosis

    In Vivo Analysis of the Regeneration Capacity and Immune Response to Xenogeneic and Synthetic Bone Substitute Materials

    No full text
    Although various studies have investigated differences in the tissue reaction pattern to synthetic and xenogeneic bone substitute materials (BSMs), a lack of knowledge exists regarding the classification of both materials based on the DIN ISO 10993-6 scoring system, as well as the histomorphometrical measurement of macrophage subtypes within their implantation beds. Thus, the present study was conducted to analyze in vivo responses to both xenogeneic and synthetic bone substitute granules. A standardized calvaria implantation model in Wistar rats, in combination with established scoring, histological, histopathological, and histomorphometrical methods, was conducted to analyze the influence of both biomaterials on bone regeneration and the immune response. The results showed that the application of the synthetic BSM maxresorb® induced a higher pro-inflammatory tissue response, while the xenogeneic BSM cerabone® induced a higher anti-inflammatory reaction. Additionally, comparable bone regeneration amounts were found in both study groups. Histopathological scoring revealed that the synthetic BSM exhibited non-irritant scores at all timepoints using the xenogeneic BSM as control. Overall, the results demonstrated the biocompatibility of synthetic BSM maxresorb® and support the conclusion that this material class is a suitable alternative to natural BSM, such as the analyzed xenogeneic material cerabone®, for a broad range of indications
    corecore