68 research outputs found

    The Bet-Hedging Strategies for Seedling Emergence of Calligonum mongolicum to Adapt to the Extreme Desert Environments in Northwestern China

    Get PDF
    Calligonum mongolicum is a dominant native perennial shrub on sand dunes in arid deserts of northwestern China, and is therefore widely used in sand dune stabilization in these regions. However, it remains largely unknown how seedling emergence of C. mongolicum has adapted to unpredictable sand movement and extreme drought. Here we examined effects of seed burial depth, light intensity, and seed age on seedling emergence, and considered seed germination and seedling emergence strategies for the shrub’s adaption to the desert environment. In our pot experiment, the optimum seeding depth for emergence of C. mongolicum was 2 cm, indicating that for germination and seedling emergence only moderate sand burial is required. Light intensity at the surface soil (0 cm) was important for seedling emergence, while there was no significant difference between 50 and 20% light flux density, at burial depths of 1 and 2 cm, indicating that C. mongolicum seeds had adapted to sand burial, while not exposure from sand erosion. We also found C. mongolicum seedlings emerged in spring and in late summer to early autumn. Meanwhile, seedling emergence percentage for 3-year-old seeds was similar to that of 1-year-old seeds, which meant that C. mongolicum seeds were well preserved under normal sand dune conditions, thus were capable of developing a persistent, but shallow soil seed-bank. These results indicated that germination and seedling emergence take a bet-hedging strategies to adapt to variable desert environments. Our study confirmed that C. mongolicum desert shrubs combine strategies in its adaption to arid and variable sand environments

    A survey of leaf phosphorus fractions and leaf economic traits among 12 co-occurring woody species on phosphorus-impoverished soils

    Get PDF
    Background and Aims: The leaf economic spectrum (LES) is related to dry mass and nutrient investments towards photosynthetic processes and leaf structures, and to the duration of returns on those investments (leaf lifespan, LL). Phosphorus (P) is a key limiting nutrient for plant growth, yet it is unclear how the allocation of leaf P among different functions is coordinated with the LES. We addressed this question among 12 evergreen woody species co-occurring on P-impoverished soils in south-eastern Australia. Methods: Leaf ‘economic’ traits, including LL, leaf mass per area (LMA), light-saturated net photosynthetic rate per mass (Amass), dark respiration rate, P concentration ([Ptotal]), nitrogen concentration, and P resorption, were measured for three pioneer and nine non-pioneer species. Leaf P was separated into five functional fractions: orthophosphate P (Pi), metabolite P (PM), nucleic acid P (PN), lipid P (PL), and residual P (PR; phosphorylated proteins and unidentified compounds that contain P). Results: LL was negatively correlated with Amass and positively correlated with LMA, representing the LES. Pioneers occurred towards the short-LL end of the spectrum and exhibited higher [Ptotal] than non-pioneer species, primarily associated with higher concentrations of Pi, PN and PL. There were no significant correlations between leaf P fractions and LL or LMA, while Amass was positively correlated with the concentration of PR. Conclusions: Allocation of leaf P to different fractions varied substantially among species. This variation was partially associated with the LES, which may provide a mechanism underlying co-occurrence of species with different ecological strategies under P limitation

    Carboniferous to Early Permian tectono-sedimentary evolution in the western Junggar Basin, NW China: implication for the evolution of Junggar Ocean

    Get PDF
    The discovery of Carboniferous hydrocarbon source rocks in the Mahu-Shawan Sag has implied considerable exploration potential in the Carboniferous strata in the western Junggar Basin. However, controversy has long surrounded when and how the Junggar Ocean was eventually closed, leading to a poor understanding of the Carboniferous basin evolution and the continental growth of the Central Asian Orogenic Belt. We performed stratigraphic and geochronologic studies to establish the chronostratigraphic framework of the western Junggar Basin to better understand its tectonic-sedimentary evolution during the Carboniferous-Early Permian. Three tectonostratigraphic units in the southern West Junggar region have been identified as Early Carboniferous shallow-deep marine sequences, Late Carboniferous coast-shallow marine sequences, and Early Permian continental sequences. The Carboniferous strata are similar to forearc and backarc-rift sequences in the Western Fault Belt and the Mahu-Shawan Sag, respectively. The Lower Permian strata in the southern West Junggar region are all continental sequences. Seismic profiles indicate extensional settings in the early stage of Late Carboniferous and Early Permian but a compressional setting at the end of Late Carboniferous. Geochemical data have suggested a Carboniferous continental arc setting and an Early Permian within-plate extensional setting. Meanwhile, calc-alkaline arc magma migrated from the Zhongguai High to the Western Fault Belt at the end of the Late Carboniferous. Collectively, the tectonic-sedimentary evolution in the Carboniferous-Early Permian of the southern West Junggar region can be divided into three stages: 1) Early Carboniferous subduction, 2) Late Carboniferous slab roll-back, and 3) Early Permian intra-continental evolution stage. This model constrains the closure of the Junggar Ocean at the Late Carboniferous

    Natural Coevolution of Tumor and Immunoenvironment in Glioblastoma.

    Get PDF
    Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM\u27s natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A-FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow-derived macrophages through activation of the FOSL2-ANXA1-FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration. SIGNIFICANCE: GBM progression could be induced by hypoxia via the HIF1A-FOSL2 axis. Tumor-derived ANXA1 is associated with recruitment and polarization of bone marrow-derived macrophages to suppress the immunoenvironment. The polarized macrophages promote tumor cell NES transition and migration. This article is highlighted in the In This Issue feature, p. 2711

    Characteristics and Treatment Outcomes of Patients with MDR and XDR Tuberculosis in a TB Referral Hospital in Beijing: A 13-Year Experience

    Get PDF
    Background: Information on treatment outcomes among hospitalized patients with multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) are scarce in China. Methodology/Principal Findings: We conducted this retrospective study to analyze the characteristics and treatment outcomes in MDR- and XDR-TB patients in the 309 Hospital in Beijing, China during 1996-2009. Socio-demographic and clinical data were retrieved from medical records and analyzed. Logistic regression analysis was performed to identify risk factors associated with poor treatment outcomes and Cox proportional hazards regression model was further used to determine risk factors associated with death in TB patients. Among the 3,551 non-repetitive hospitalized TB patients who had drug susceptibility testing (DST) results, 716 (20.2%) had MDR-TB and 51 (1.4%) had XDR-TB. A total of 3,270 patients who had medical records available were used for further analyses. Treatment success rates (cured and treatment completed) were 90.9%, 53.4% and 29.2% for patients with non-MDR-TB, patients with MDR-TB excluding XDR-TB and patients with XDR-TB, respectively. Independent risk factors associated with poor treatment outcomes in MDR-TB patients included being a migrant (adjusted OR = 1.77), smear-positivity at treatment onset (adjusted OR = 1.94) and not receiving 3 or more potentially effective drugs (adjusted OR = 3.87). Independent risk factors associated with poor treatment outcomes in XDR-TB patients were smear-positivity at treatment onset (adjusted OR = 10.42) and not receiving 3 or more potentially effective drugs (adjusted OR = 14.90). The independent risk factors associated with death in TB patients were having chronic obstructive pulmonary disease (adjusted HR = 5.25) and having hypertension (adjusted HR = 4.31). Conclusions/Significance: While overall satisfactory treatment success for non-MDR-TB patients was achieved, more intensive efforts should be made to better manage MDR- and XDR-TB cases in order to improve their treatment outcomes and to minimize further emergence of so-called totally drug-resistant TB cases. © 2011 Liu et al.published_or_final_versio

    A Novel 3D-Morphology Pyrene-Derived Conjugated Fluorescence Polymer for Picric Acid Detection

    No full text
    Aggregation-induced quenching (ACQ) is a hard problem in fluorescence material, leading to a poor utilization rate of fluorophores. In this work, 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) was synthesized and used as a precursor to build two kinds of fluorescence polymer. The TFFPy molecule with D2h symmetry can easily form polymers with C3 symmetry amines through the Schiff base reaction, making the resulting polymer a 3D amorphous material. Thus, ACQ of fluorophore can be reduced to minimum, making the most usage of the fluorescence of pyrene core. Fluorescence titration and DFT calculation can clearly prove this conclusion. The resulting CPs showed a highly sensitivity to picric acid, down to 3.43 ppm in solution, implying its potential in explosive detection
    • …
    corecore