86 research outputs found

    Invariant Forms and Automorphisms of Locally Homogeneous Multisymplectic Manifolds

    Full text link
    It is shown that the geometry of locally homogeneous multisymplectic manifolds (that is, smooth manifolds equipped with a closed nondegenerate form of degree > 1, which is locally homogeneous of degree k with respect to a local Euler field) is characterized by their automorphisms. Thus, locally homogeneous multisymplectic manifolds extend the family of classical geometries possessing a similar property: symplectic, volume and contact. The proof of the first result relies on the characterization of invariant differential forms with respect to the graded Lie algebra of infinitesimal automorphisms, and on the study of the local properties of Hamiltonian vector fields on locally multisymplectic manifolds. In particular it is proved that the group of multisymplectic diffeomorphisms acts (strongly locally) transitively on the manifold. It is also shown that the graded Lie algebra of infinitesimal automorphisms of a locally homogeneous multisymplectic manifold characterizes their multisymplectic diffeomorphisms.Comment: 25 p.; LaTeX file. The paper has been partially rewritten. Some terminology has been changed. The proof of some theorems and lemmas have been revised. The title and the abstract are slightly modified. An appendix is added. The bibliography is update

    Pseudo-distances on symplectomorphism groups and applications to flux theory

    Full text link
    Starting from a given norm on the vector space of exact 1-forms of a compact symplectic manifold, we produce pseudo-distances on its symplectomorphism group by generalizing an idea due to Banyaga. We prove that in some cases (which include Banyaga's construction), their restriction to the Hamiltonian diffeomorphism group is equivalent to the distance induced by the initial norm on exact 1-forms. We also define genuine "distances to the Hamiltonian diffeomorphism group" which we use to derive several consequences, mainly in terms of flux groups.Comment: 21 pages, no figure; v2. various typos corrected, some references added. Published in Mathematische Zeitschrif

    The Geometry of Integrable and Superintegrable Systems

    Full text link
    The group of automorphisms of the geometry of an integrable system is considered. The geometrical structure used to obtain it is provided by a normal form representation of integrable systems that do not depend on any additional geometrical structure like symplectic, Poisson, etc. Such geometrical structure provides a generalized toroidal bundle on the carrier space of the system. Non--canonical diffeomorphisms of such structure generate alternative Hamiltonian structures for complete integrable Hamiltonian systems. The energy-period theorem provides the first non--trivial obstruction for the equivalence of integrable systems

    Slow Diffeomorphisms of a Manifold with Two Dimensions Torus Action

    Full text link
    The uniform norm of the differential of the n-th iteration of a diffeomorphism is called the growth sequence of the diffeomorphism. In this paper we show that there is no lower universal growth bound for volume preserving diffeomorphisms on manifolds with an effective two dimensions torus action by constructing a set of volume-preserving diffeomorphisms with arbitrarily slow growth.Comment: 12 p

    On magnetic leaf-wise intersections

    Full text link
    In this article we introduce the notion of a magnetic leaf-wise intersection point which is a generalization of the leaf-wise intersection point with magnetic effects. We also prove the existence of magnetic leaf-wise intersection points under certain topological assumptions.Comment: 43 page

    Contact complete integrability

    Full text link
    Complete integrability in a symplectic setting means the existence of a Lagrangian foliation leaf-wise preserved by the dynamics. In the paper we describe complete integrability in a contact set-up as a more subtle structure: a flag of two foliations, Legendrian and co-Legendrian, and a holonomy-invariant transverse measure of the former in the latter. This turns out to be equivalent to the existence of a canonical RRn1\R\ltimes \R^{n-1} structure on the leaves of the co-Legendrian foliation. Further, the above structure implies the existence of nn contact fields preserving a special contact 1-form, thus providing the geometric framework and establishing equivalence with previously known definitions of contact integrability. We also show that contact completely integrable systems are solvable in quadratures. We present an example of contact complete integrability: the billiard system inside an ellipsoid in pseudo-Euclidean space, restricted to the space of oriented null geodesics. We describe a surprising acceleration mechanism for closed light-like billiard trajectories

    Locally continuously perfect groups of homeomorphisms

    Full text link
    The notion of a locally continuously perfect group is introduced and studied. This notion generalizes locally smoothly perfect groups introduced by Haller and Teichmann. Next, we prove that the path connected identity component of the group of all homeomorphisms of a manifold is locally continuously perfect. The case of equivariant homeomorphism group and other examples are also considered.Comment: 14 page

    Imprints of the Quantum World in Classical Mechanics

    Full text link
    The imprints left by quantum mechanics in classical (Hamiltonian) mechanics are much more numerous than is usually believed. We show Using no physical hypotheses) that the Schroedinger equation for a nonrelativistic system of spinless particles is a classical equation which is equivalent to Hamilton's equations.Comment: Paper submitted to Foundations of Physic

    Groups of diffeomorphisms and geometric loops of manifolds over ultra-normed fields

    Full text link
    The article is devoted to the investigation of groups of diffeomorphisms and loops of manifolds over ultra-metric fields of zero and positive characteristics. Different types of topologies are considered on groups of loops and diffeomorphisms relative to which they are generalized Lie groups or topological groups. Among such topologies pairwise incomparable are found as well. Topological perfectness of the diffeomorphism group relative to certain topologies is studied. There are proved theorems about projective limit decompositions of these groups and their compactifications for compact manifolds. Moreover, an existence of one-parameter local subgroups of diffeomorphism groups is investigated.Comment: Some corrections excluding misprints in the article were mad
    corecore