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Abstract

Let (N,α) be a compact contact manifold and (N ×R, d(etα)) its symplectisation. We show

that the group G which is the identity component in the group of symplectic diffeomorphisms

φ of (N × R, d(etα)) that cover diffeomorphisms φ of N × S1 is simple, by showing that G

is isomorphic to the kernel of the Calabi homomorphism of the associated locally conformal

symplectic structure.
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1. Introduction and statements of the results

The structure of the group of compactly supported symplectic diffeomorphisms of a symplec-

tic manifold is well understood [1], see also [2]. For instance, if (M,Ω) is a compact symplec-

tic manifold, the commutator subgroup [DiffΩ(M)0,DiffΩ(M)0] of the identity component

DiffΩ(M)0 in the group of all symplectic diffeomorphisms, is the kernel of a homomorphism

from DiffΩ(M)0 to a quotient of H1(M,R) (the Calabi homomorphism) and it is a simple

group.

Unfortunately, the structure of the group of symplectic diffeomorphisms of a non compact

manifold, with unrestricted supports in largely unkown.

In this paper, we study the group DiffΩ̃(N × R) of symplectic diffeomorphisms of the

symplectisation (N × R, Ω̃ = d(etα)) of a compact contact manifold (N,α). Our main result is

the following

Theorem 1.

Let G be the subgroup of DiffΩ̃(N × R) consisting of elements φ, isotopic to the identity

through isotopies φt in DiffΩ̃(N ×R), which cover isotopies φt of N ×S1. Then G is a simple

group.

Recall that a group G is said to be a simple group if it has no non-trivial normal subgroup.

In particular it is equal to its commutator subgroup [G,G].

Let DiffΩ̃(N × R)0 be the subgroup consisting of elements isotopic to the identity in

DiffΩ̃(N × R). For φ ∈ DiffΩ̃(N × R)0, the 1-form

C̃(φ) = φ∗(etα) − etα

is closed. Let C(φ) denote its cohomology class in H1(N × R,R) ≈ H1(N,R).

The map φ 7→ C(φ) is a surjective homomorphism

C : DiffΩ̃(N × R)0 → H1(N,R)

(the Calabi homomorphism, see [1]).

Corollary.

The group G is contained in the kernel of C.

Proof.

Since G is simple, the kernel of the restriction C0 of C to G is either the trivial group {id}

or the whole group G. But KerC0 contains [G,G] 6= {1d}. Hence KerC0 = G. �
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Theorem 1 follows from the study of the structure of the group of diffeomorphisms preserving

a locally conformal symplectic structure. Each locally conformal symplectic manifold (M,Ω),

is covered in a natural way by a symplectic manifold (M̃, Ω̃). We analyse the group of sym-

plectic diffeomorphisms of M̃ , which cover diffeomorphisms of M (Theorem 2). Our results

will be deducted from the fact that, if (N,α) is a contact manifold, then N × S1 has a locally

conformal symplectic structure and the associated symplectic manifold covering N × S1 is pre-

cisely the symplectisation. We show that the group G is isomorphic to the kernel of the Calabi

homomorphism for locally conformal symplectic geometry.

2. The structure of the group of diffeomorphisms covering locally conformal

symplectic diffeomorphisms.

A locally conformal symplectic form on a smooth manifold M is a non-degenerate 2-form Ω

such that there exists a closed 1-form ω satisfying:

dΩ = −ω ∧ Ω.

The 1-form ω is uniquely determined by Ω and is called the Lee form of Ω. The couple (M,Ω)

is called a locally conformal symplectic (lcs, for short) manifold, see [3], [7], [11].

The group Diff(M,Ω) of automorphisms of a lcs manifold (M,Ω) consists of diffeomor-

phisms φ of M such that φ∗Ω = fΩ for some non-zero function f . Here we will always assume

that f is a positive function. Such a diffeomorphism is said to be a locally conformal symplectic

diffeomorphism.

Let M̃ be the minimum regular cover of M over which the form ω pulls to an exact form:

i.e. if π : M̃ →M is the covering map, then

π∗ω = d(lnλ).

If λ′ is another function such that π∗ω = d(lnλ′), then λ′ = aλ for some constant a.

On M̃ , we consider the symplectic form

Ω̃ = λπ∗Ω

The conformal class of Ω̃ is independent of the choice of λ [4].

A diffeomorphism φ of M̃ is said to be fibered if there exists a diffeomorphism h of M such

that π ◦ φ = h ◦ π. We also say that φ covers h.
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Proposition 1.

If a diffeomorphism φ of M̃ covers a diffeomorphism h of M , then φ is conformal symplectic

iff h is locally conformal symplectic.

Proof.

Suppose φ : M̃ → M̃ is conformal symplectic, and covers h : M →M . Then φ∗(Ω̃) = aΩ̃ for

some number a ∈ R. We have:

π∗(h∗Ω) = φ∗(π∗Ω) = φ∗((1/λ)Ω̃) = (
1

λ
◦ φ))aΩ̃ = a(

1

λ
◦ φ)λπ∗Ω.

Let τ be an automorphism of the covering M̃ →M , then

τ∗π∗(h∗Ω) = (π ◦ τ)∗(h∗Ω) = π∗(h∗Ω) = τ∗[(a
1

λ
◦ φ)λ]τ∗π∗Ω = τ∗[(a

1

λ
◦ φ)λ]π∗Ω.

Therefore τ∗[(a 1
λ
◦φ)λ] = (a 1

λ
◦φ)λ) since π∗Ω is non-degenerate. Hence (a 1

λ
◦φ)λ) = u ◦ φ,

where u is a basic function. We thus get π∗(h∗Ω) = π∗(uΩ). Since π is a covering map,

h∗Ω = uΩ.

Conversely if h ∈ Diff(M,Ω), i.e. h∗Ω = uΩ for some function u on M , and φ is its lift on

M̃ , then: φ∗Ω̃ = φ∗(λπ∗Ω) = (λ◦φ)φ∗π∗Ω = (λ◦φ)(π◦φ)∗Ω = (λ◦φ)(h◦π)∗Ω = (λ◦φ)π∗h∗Ω =

(λ ◦ φ)π∗(uΩ) = (λ◦h
λ
u ◦ π)Ω̃.

A theorem of Liberman (see [9] or [5]) asserts that if a diffeomorphism preserves a symplectic

form up to a smooth function, then this function is a constant provided that the dimension of

the manifold is at least 4. Hence φ is a conformal symplectic diffeomorphism.

�

Let DiffΩ̃(M̃)C be the group of conformal symplectic of M̃ : a diffeomorphism φ of M̃

belongs to this group if φ∗Ω̃ = aΩ̃ for some positive number a.

The group DiffΩ̃(M̃) of symplectic diffeomorphisms is the kernel of the homomorphism:

d : DiffΩ̃(M̃)C → R
+

sending φ to a ∈ R
+ when φ∗Ω̃ = aΩ̃.

We consider the subgroupsDiffΩ̃(M̃)F
C , resp. DiffΩ̃(M̃)F ofDiffΩ̃(M)C , resp. ofDiffΩ̃(M̃)

consisting of fibered elements.

Finally, let GC , resp. G be the subgroups of DiffΩ̃(M̃)F
C , resp. DiffΩ̃(M̃)F consisting

of elements that are isotopic to the identity through these respective groups. We denote by

Diff(M,Ω)0 the identity component in the groupDiff(M,Ω), endowed with the C∞ topology.
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By Proposition 1, we have a homomorphism ρ : GC → Diff(M,Ω)0. This homomorphism

is surjective: indeed, any diffeomorphism isotopic to the identity lifts to a diffeomorphism of

the covering space M̃ . See for instance [6]. By Proposition 1, that lifting must be a conformal

symplectic diffeomorphism.

Let A be the group of automorphisms of the covering π : M̃ →M . For any τ ∈ A, (λ ◦ τ)/λ

is a constant cτ independent of λ and the map τ 7→ cτ is a group homomorphism [5]

c : A → R
+

Let us denote by ∆ ⊂ R
+ the image of c and by K ⊂ A its kernel.

For τ ∈ A, we have: τ∗Ω̃ = τ∗(λπ∗Ω) = (λ◦τ)τ∗π∗Ω = (λ◦τ)π∗Ω = ((λ◦τ)/λ)(λπ∗Ω) = cτ Ω̃.

This shows that

Kerρ = A.

Each element h ∈ Diff(M,Ω)0 lifts to an element φ ∈ GC and two different liftings differ

by an element of A. Hence the mapping h 7→ d(φ) is a well defined map

L : Diff(M,Ω)0 → R/∆.

It is a homomorphism since a lift of φψ differs from the product of their lifts by an element

of A.

Let L(M,Ω) be the Lie algebra of locally conformal symplectic vector fields, consisting of

vector fields X such that LXΩ = µXΩ for some function µX on M and LX stands for the Lie

derivative in the direction X.

Let Ω be a lcs form with Lee form ω on a manifold M . One verifies that for all X ∈ L(M,Ω),

then the function l(X) = ω(X) + µX is a constant, and that the map

l : L(M,Ω) → R;X 7→ l(X)

is a Lie algebra homomorphism, called the extended Lee homomorphism [1], see also [3], [5].

We need now to recall the definition of the Lichnerowicz cohomology [7]. This is the co-

homology of the complex of differential forms Λ(M) on a smooth manifold with the de Rham

differential replaced by dω, dωθ = dθ+ ω ∧ θ, where ω is a closed 1-form on M . We denote this

cohomology by: H∗

ω(M).

If (M,Ω) is a locally conformal symplectic form with Lee form ω, the equation dΩ = −ω ∧Ω

says that the 2-form Ω is dω closed, and hence defines a class [Ω] ∈ H2
ω(M).
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Proposition.

Let Ω be a lcs form with Lee form ω on a smooth manifold M . The extended Lee homomor-

phism is surjective iff the Lichnerowicz cohomology class [Ω] ∈ H2
ω(M) is zero, i.e. iff Ω is dω

- exact.

This proposition is essentially due to Guedira-Lichnerowicz [7] and Viasman [11] can also be

found in several places [4], [5], [8].

Let φt be a smooth family of locally conformal symplectic diffeomorphisms with φ0 = idM ,

and let Xt be the family of vector fields defined by:

Xt(φt(x)) =
d

dt
(φt(x)).

Then Xt is a family of locally conformal vector fields: there exists a smooth family of functions

µXt
such that LXt

Ω = µXt
Ω.

The mapping:

φt 7→

∫ 1

0

l(Xt))dt

induces a well defined homomorphism L̃ from the universal covering U(Diff(M,Ω)0) ofDiff(M,Ω)0

to R, and therefore induces a homomorphim

L : Diff(M,Ω)0 → R/Γ

where Γ ⊂ R is the image by L̃ of the fundamental group of Diff(M,Ω)0.

This integration of the extended Lee homomorphism l : L(M,Ω) → R was considered in [8].

Another integration of the extended Lee homomorphism was constructed in [4], [5]. It is

shown there that the subroups ∆ and Γ of R below are the same and that the homomorphisms

L and L above coincide.

We will need the following result of Haller and Rybicki [8]:

Theorem.

Let (M,Ω) be a compact lcs manifold with [Ω] = 0 ∈ H2
ω(M) , where ω is the Lee form of Ω,

then

1. KerL = [Diff(M,Ω)0,Diff(M,Ω)0].

2. There is a surjective homomorphism S from KerL to a quotient of H1
ω(M) whose kernel

is a simple group.
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The homomorphism S is an analogue of the Calabi homomorphism [1], and the theorem

above is a generalization to locally conformal symplectic manifolds of the results on symplectic

manifolds in [1]. The definition of the homomorphism S is recalled in the appendix.

As a consequence of these constructions and results, we have the following

Theorem 2.

Let (M,Ω) be a compact lcs manifold with Lee form ω and such that [Ω] = 0 ∈ H2
ω(M).

Then:

1. d and L are surjective.

2. We have the following exact sequence:

{1} −→ K −→ G −→ KerL −→ {1}

3. KerL ≈ [Diff(M,Ω)0,Diff(M,Ω)0].

Proof.

Let θ be a 1-form such that Ω = dωθ and let X be defined by iXΩ = θ. Then X ∈ L(M,ω)

and l(X) = 1. Hence L is surjective. The horizontal lift X̃ of X to M̃ is a complete vector field,

and if h is its time 1 flow, then d(h) = 1. Hence the mapping d is surjective.

Since L is equal to L, the point 3 is just a part of Haller-Rybicki theorem.

Let h, g ∈ Diff(M,Ω)0 and their lifts φ, ψ on M̃ . Let a, b ∈ R such that φ∗Ω̃ = aΩ̃, ψ∗Ω̃ =

bΩ̃. Then the commutator hgh−1g−1 lifts to φψφ−1ψ−1,and (φψφ−1ψ−1)∗Ω̃ = b−1a−1baΩ̃ = Ω̃.

Hence all of KerL lifts to G since KerL ≈ [Diff(M,ω)0,Diff(M,Ω)0]. This finishes the proof

that the sequence 2 is exact. �

3. The symplectisation of a contact manifold

Let α be a contact form on a smooth manifold N . Let p1, p2 be the projections from M =

N × S1 to the factors N,S1. If µ is the canonical 1-form on S1 such that
∫

S1 µ = 1, then

Ω = dθ + ω ∧ θ, where θ = pα
1 , ω = p∗2µ, is a lcs form on M = N × S1.

The hypothesis of Theorem 2 are satisfied for M = N × S1, where N is a compact contact

manifold and Ω = dωθ as above.

The minimun cover M̃ is N×R, the projection π : N×R → N×S1 is the standard projection:

π(x, t) = (x, e2πit), and π∗ω = dt, λ = et. We have: Ω̃ = λπ∗Ω = et(dα + dt ∧ α) = d(etα).

Hence (M̃, Ω̃) is the symplectisation (N × R, d(etα)).
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Here A consists of maps γn(x, t) = (x, n + t), for all n ∈ Z. We have γ∗nΩ̃ = d(γ∗n(etα)) =

d(e(t+n)α = enΩ̃. Hence γn ∈ Kerc = K iff n = 0, i.e. Kerc = {id}. This and Theorem 2 (2)

show that

G = DiffΩ̃(N × R)F
0 ≈ KerL

The last step is to show that KerL is a simple group. The Calabi homomorphism S takes KerL

to a quotient of H1
ω(N × S1), as one can see in the appendix.. But we know that:

H∗

ω(N × S1) ≈ 0

Indeed, take an exact 1-form σ onN and consider ω′ = ω+p∗1σ. ThenH∗

ω(N×S1) ≈ H∗

ω′(N×S1)

since ω and ω′ are cohomologous. By the Kunneth formula for the Lichnerowicz cohomology,

Hi
ω′(N × S1) ≈ ⊕(Hj

µ(S1) ⊗ Hi−j
σ (N). But is known that Hj

µ(S1) = 0 for all j [7], [8], [3].

Therefore H∗

ω′′(N × S1) ≈ H∗

ω(N × S1) = {0}.

Hence, KerS = KerL is a simple group. This ends the proof of Theorem 1. �

Appendix

For completeness, we recall briefly the Calabi homomorphism in lcs geometry[8]: an element

φ̃ of the universal covering of KerL can be represented by an isotopy φt ∈ Diff(M,Ω) with

tangent vector fields Xt ∈ Kerl. Recall that Xt is defined by : Xt(φt(x)) = d
dt

(φt(x)). This

implies that dω(i(Xt)Ω = 0, since

dω(i(Xt)Ω) = d(i(Xt)Ω) + ω ∧ (i(Xt)Ω) =

LXt
Ω − i(Xt)(−ω ∧ Ω) + ω ∧ (i(Xt)Ω)

= (µXt
+ ω(Xt))Ω = l(Xt)Ω = 0.

One shows that

[

∫ 1

0

(i(Xt)Ω)dt] ∈ H1
ω(M)

depends only on φ̃, and that the correspondance

φ̃ 7→ [

∫ 1

0

(i(Xt)Ω)dt]

is a surjective homomorphism from the universal cover of KerL to H1
ω(M). This defines a

surjective homomorphism S : KerL → H1
ω(M)/Λ, where Λ is the image of the fundamental

group of KerL.
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