23 research outputs found

    Chiral sedimentation of extended objects in viscous media

    Get PDF
    We study theoretically the chirality of a generic rigid object's sedimentation in a fluid under gravity in the low Reynolds number regime. We represent the object as a collection of small Stokes spheres or stokeslets, and the gravitational force as a constant point force applied at an arbitrary point of the object. For a generic configuration of stokeslets and forcing point, the motion takes a simple form in the nearly free draining limit where the stokeslet radius is arbitrarily small. In this case, the internal hydrodynamic interactions between stokeslets are weak, and the object follows a helical path while rotating at a constant angular velocity ω\omega about a fixed axis. This ω\omega is independent of initial orientation, and thus constitutes a chiral response for the object. Even though there can be no such chiral response in the absence of hydrodynamic interactions between the stokeslets, the angular velocity obtains a fixed, nonzero limit as the stokeslet radius approaches zero. We characterize empirically how ω\omega depends on the placement of the stokeslets, concentrating on three-stokeslet objects with the external force applied far from the stokeslets. Objects with the largest ω\omega are aligned along the forcing direction. In this case, the limiting ω\omega varies as the inverse square of the minimum distance between stokeslets. We illustrate the prevalence of this robust chiral motion with experiments on small macroscopic objects of arbitrary shape.Comment: 35 pages, 10 figures; Section VII.A redone and other edits made for clarity. Accepted by Phys. Rev.

    3D Brownian Diffusion of Submicron-Sized Particle Clusters

    Full text link
    We report on the translation and rotation of particle clusters made through the combination of spherical building blocks. These clusters present ideal model systems to study the motion of objects with complex shape. Because they could be separated into fractions of well-defined configurations on a sufficient scale and their overall dimensions were below 300 nm, the translational and rotational diffusion coefficients of particle duplets, triplets and tetrahedrons could be determined by a combination of polarized dynamic light scattering (DLS) and depolarized dynamic light scattering (DDLS). The use of colloidal clusters for DDLS experiments overcomes the limitation of earlier experiments on the diffusion of complex objects near surfaces because the true 3D diffusion can be studied. When the exact geometry of the complex assemblies is known, different hydrodynamic models for calculating the diffusion coefficient for objects with complex shapes could be applied. Because hydrodynamic friction must be restricted to the cluster surface the so-called shell model, in which the surface is represented as a shell of small friction elements, was most suitable to describe the dynamics. A quantitative comparison of the predictions from theoretical modeling with the results obtained by DDLS showed an excellent agreement between experiment and theory

    Two-Dimensional Sol-Gel Transition in Silica Alkoxides at the Air/Water Interface

    No full text
    We have investigated the 2D viscoelastic behavior of the reactive sol-gel transition of silica alkoxides deposited at the air/acidic water interface of a Langmuir trough by oscillatory interfacial rheology. The storage and loss moduli increased with time as the hydrolysis-condensation reaction took place. There was evidence of a 2D gel point, which was discussed within the percolation theory framework. The power law dependence value of n = 0.63 was similar to those found for bulk systems. The final network had a low fractal dimension value of df = 1.17 (for a 2D system) indicating a rather open structure, in agreement with acidic catalysis, and a somewhat low effective modulus of 20 MPa
    corecore