12 research outputs found

    Association study of promoter polymorphisms at the dopamine transporter gene in Attention Deficit Hyperactivity Disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Attention deficit hyperactivity disorder (ADHD) is a complex neurobehavioral disorder. The dopamine transporter gene (DAT1/<it>SLC6A3</it>) has been considered a good candidate for ADHD. Most association studies with ADHD have investigated the 40-base-pair variable number of tandem repeat (VNTR) polymorphism in the 3'-untranslated region of DAT1. Only few studies have reported association between promoter polymorphisms of the gene and ADHD.</p> <p>Methods</p> <p>To investigate the association between the polymorphisms -67A/T (rs2975226) and -839C/T (rs2652511) in promoter region of DAT1 in ADHD, two samples of ADHD patients from the UK (n = 197) and Taiwan (n = 212) were genotyped, and analysed using within-family transmission disequilibrium test (TDT).</p> <p>Results</p> <p>A significant association was found between the T allele of promoter polymorphism -67A/T and ADHD in the Taiwanese population (<it>P </it>= 0.001). There was also evidence of preferential transmission of the T allele of -67A/T polymorphism in combined samples from the UK and Taiwan (<it>P </it>= 0.003). No association was detected between the -839C/T polymorphism and ADHD in either of the two populations.</p> <p>Conclusion</p> <p>The finding suggests that genetic variation in the promoter region of DAT1 may be a risk factor in the development of ADHD.</p

    A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection.

    Get PDF
    The response to respiratory viruses varies substantially between individuals, and there are currently no known molecular predictors from the early stages of infection. Here we conduct a community-based analysis to determine whether pre- or early post-exposure molecular factors could predict physiologic responses to viral exposure. Using peripheral blood gene expression profiles collected from healthy subjects prior to exposure to one of four respiratory viruses (H1N1, H3N2, Rhinovirus, and RSV), as well as up to 24 h following exposure, we find that it is possible to construct models predictive of symptomatic response using profiles even prior to viral exposure. Analysis of predictive gene features reveal little overlap among models; however, in aggregate, these genes are enriched for common pathways. Heme metabolism, the most significantly enriched pathway, is associated with a higher risk of developing symptoms following viral exposure. This study demonstrates that pre-exposure molecular predictors can be identified and improves our understanding of the mechanisms of response to respiratory viruses.Defense Advanced Research Projects AgencyArmy Research Office through Grant W911NF-15-1-010

    Heterogeneity in sepsis: new biological evidence with clinical applications

    No full text
    Abstract This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2019. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2019. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901
    corecore