8 research outputs found

    Development and characterization of biocomposite films using banana pseudostem, cassava starch and poly(vinyl alcohol): A sustainable packaging alternative

    Get PDF
    To meet the need for sustainable packaging, we introduce a novel biocomposite film consisting of banana pseudostem, cassava starch, and poly(vinyl alcohol). We aimed to evaluate the optimal biocomposite film composition, which is characteristic for packaging materials. Using the solvent casting method, we produced biocomposite films with varying proportions (10-40 % w/w) of the lignocellulosic component from both Sour and Ash Plantain banana pseudostems. The resulting biocomposite films were characterized for mechanical, chemical, thermal, water absorption, gas permeability, and morphological properties. At the 25 % lignocellulosic level, a notable drop (P < 0.05) in tensile strength and elongation was observed, while water absorption increased, and gas permeability decreased. Fourier Transform Infrared Spectroscopy analysis revealed insights into the structural attributes of lignocellulosic composites. Thermogravimetric analysis indicated an onset temperature of 120 degree celsius for thermal degradation, confirming the biocomposite's thermal stability. A fundamental discovery emerged with the optimal composition at a 30 % pseudostem powder inclusion, offering an exceptional balance of tensile strength, elongation at break, water absorption, and gas permeability. This breakthrough holds significant implications for eco-friendly biocomposite films, particularly in food packaging. Future work may be undertaken to further explore banana pseudostems' potential in creating biocomposite films with advanced functionalities and their broader applications, including characterizations

    Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications

    Get PDF
    Environmental pollution by synthetic polymers is a global problem and investigating substitutes for synthetic polymers is a major research area. Starch can be used in formulating bioplastic materials, mainly as blends or composites with other polymers. The major drawbacks of using starch in such applications are water sensitivity and poor mechanical properties. Attempts have been made to improve the mechanical properties of starch-based blends and composites, by e.g., starch modification or plasticization, matrix reinforcement, and polymer blending. Polymer blending can bring synergetic benefits to blends and composites, but necessary precautions must be taken to ensure the compatibility of hydrophobic polymers and hydrophilic starch. Genetic engineering offers new possibilities to modify starch inplanta in a manner favorable for bioplastics applications, while the incorporation of antibacterial and/or antioxidant agents into starch-based food packaging materials brings additional advantages. In conclusion, starch is a promising material for bioplastic production, with great potential for further improvements. This review summarizes the recent advances in starch-based blends and composites and highlights the potential strategies for overcoming the major drawbacks of using starch in bioplastics applications

    Quality parameters of natural phenolics and its impact on physicochemical, microbiological, and sensory quality attributes of probiotic stirred yogurt during the storage

    Get PDF
    Physicochemical, microbiological, and organoleptic properties were evaluated for probiotic stirred yogurts with plant pigments; 10% Hibiscus, 4% Turmeric, 6% Spinach, and 4% Blue pea, over 14 days at 4. compared to the colorless control. The color of yogurts were stable without sedimentation or adverse effect on physicochemical or sensory properties, although an increase of L* value observed over the storage. The microbial analysis confirmed the viability of probiotics (>9 logs CFU/mL) in all yogurts over the storage. Turmeric added yogurt resulted in the highest b* value, total phenolic content (72.6 mg GAE/L) and sensory score for color, while spinach added yogurt ranked the lowest in flavor at the end of storage. Results demonstrated the color stability of studied plant pigments in stirred yogurt with varying physicochemical and sensory properties. Addition of natural colorant in yogurt is recommended. Improved methods for extracting pigments and their health effects should be further examined

    High fructan barley lines produced by selective breeding may alter beta-glucan and amylopectin molecular structure

    Get PDF
    Six cross-bred barley lines developed by a breeding strategy with the target to enhance the fructan synthesis activity and reduce the fructan hydrolysis activity were analyzed together with their parental lines, and a reference line (Gustav) to determine whether the breeding strategy also affected the content and molecular structure of amylopectin and beta-glucan. The highest fructan and beta-glucan content achieved in the novel barley lines was 8.6 % and 12 %, respectively (12.3-fold and 3.2-fold higher than in Gustav). The lines with low fructan synthesis activity had higher starch content, smaller building blocks in amylopectin, and smaller structural units of beta-glucans than the lines with high-fructan synthesis activity. Correlation analysis confirmed that low starch content was associated with high amylose, fructan, and beta-glucan content, and larger building blocks in amylopectin

    Fecal Short-Chain Fatty Acid Ratios as Related to Gastrointestinal and Depressive Symptoms in Young Adults

    Get PDF
    Objective: Short-chain fatty acids (SCFAs) are produced by the gut microbiota and may reflect health. Gut symptoms are common in individuals with depressive disorders, and recent data indicate relationships between gut microbiota and psychiatric health. We aimed to investigate potential associations between SCFAs and self-reported depressive and gut symptoms in young adults.Methods: Fecal samples from 164 individuals (125 were patients with psychiatric disorders: mean [standard deviation] age = 21.9 [2.6] years, 14% men; 39 nonpsychiatric controls: age = 28.5 [9.5] years, 38% men) were analyzed for the SCFA acetate, butyrate, and propionate by nuclear magnetic resonance spectroscopy. We then compared SCFA ratios with dimensional measures of self-reported depressive and gut symptoms.Results: Depressive symptoms showed a positive association with acetate levels (rho = 0.235, p =.003) and negative associations with both butyrate (rho = -0.195, p =.014) and propionate levels (rho = -0.201, p =.009) in relation to total SCFA levels. Furthermore, symptoms of diarrhea showed positive associations with acetate (rho = 0.217, p =.010) and negative associations with propionate in relation to total SCFA levels (rho = 0.229, p = 0-007). Cluster analysis revealed a heterogeneous pattern where shifts in SCFA ratios were observed in individuals with elevated levels of depressive symptoms, elevated levels of gut symptoms, or both.Conclusions: Shifts in SCFAs are associated with both depressive symptoms and gut symptoms in young adults and may have of relevance for treatment

    Impact of time and temperature on gut microbiota and SCFA composition in stool samples

    Get PDF
    Gut dysbiosis has been implicated in the pathophysiology of a growing number of non-communicable diseases. High through-put sequencing technologies and short chain fatty acid (SCFA) profiling enables surveying of the composition and function of the gut microbiota and provide key insights into host-microbiome interactions. However, a methodological problem with analyzing stool samples is that samples are treated and stored differently prior to submission for analysis potentially influencing the composition of the microbiota and its metabolites. In the present study, we simulated the sample acquisition of a large-scale study, in which stool samples were stored for up to two days in the fridge or at room temperature before being handed over to the hospital. To assess the influence of time and temperature on the microbial community and on SCFA composition in a controlled experimental setting, the stool samples of 10 individuals were exposed to room and fridge temperatures for 24 and 48 hours, respectively, and analyzed using 16S rRNA gene amplicon sequencing, qPCR and nuclear magnetic resonance spectroscopy. To best of our knowledge, this is the first study to investigate the influence of storage time and temperature on the absolute abundance of methanogens, and ofLactobacillus reuteri. The results indicate that values obtained for methanogens,L.reuteriand total bacteria are still representative even after storage for up to 48 hours at RT (20 degrees C) or 4 degrees C. The overall microbial composition and structure appeared to be influenced more by laboratory errors introduced during sample processing than by the actual effects of temperature and time. Although microbial activity was demonstrated by elevated SCFA at both 4 degrees C and RT, SCFAs ratios were more stable over the different conditions and may be considered as long as samples are come from similar storage conditions

    Variation in Dairy Milk Composition and Properties Has Little Impact on Cheese Ripening: Insights from a Traditional Swedish Long-Ripening Cheese

    Get PDF
    The monthly variation in raw dairy silo milk was investigated and related to the ripening time of the resulting cheese during an industrial cheese-making trial. Milk composition varied with month, fat and protein content being lowest in August (4.19 and 3.44 g/100 g, respectively). Casein micelle size was largest (192–200 nm) in December–February and smallest (80 nm) in August. In addition, SCC, total bacteria count, proteolytic activities, gel strength, and milk fatty acid composition were significantly varied with month. Overall sensory and texture scores of resulting cheese were mainly influenced by plasmin and plasminogen activity, indicating the importance of native proteolytic systems. Recently, concepts based on the differentiated use of milk in dairy products have been suggested. For the investigated cheese type, there might be little to gain from such an approach. The variation in the investigated quality characteristics of the dairy milk used for cheese making had little effect on cheese ripening in our study. In contrast to our hypothesis, we conclude that as long as the quality of the milk meets certain minimum criteria, there are only weak associations between cheese milk characteristics and the time required for the development of aroma and texture in the cheese. To find answers behind the observed variation in cheese ripening time, studies on the effects of process parameters are needed
    corecore