107 research outputs found

    Giant Graviton and Quantum Stability in Matrix Model on PP-wave Background

    Get PDF
    We study classical solutions in Berenstein-Maldacena-Nastase (BMN) matrix model. A supersymmetric (1/2 BPS) fuzzy sphere is one of the classical solutions and corresponds to a giant graviton. We also consider other classical solutions, such as non-supersymmetric fuzzy sphere and harmonic oscillating gravitons. Some properties of oscillating gravitons are discussed. In particular, oscillating gravitons turn into usual supergravitons in the limit mu -> 0. Moreover, we calculate the one-loop effective action around the supersymmetric fuzzy sphere by the use of the background field method and show the quantum stability of the giant graviton. Also, the instability of the non-supersymmetric fuzzy sphere is proven.Comment: 21 pages, no figure, LaTe

    Non-Commutative Inflation

    Get PDF
    We show how a radiation dominated universe subject to space-time quantization may give rise to inflation as the radiation temperature exceeds the Planck temperature. We consider dispersion relations with a maximal momentum (i.e. a mimimum Compton wavelength, or quantum of space), noting that some of these lead to a trans-Planckian branch where energy increases with decreasing momenta. This feature translates into negative radiation pressure and, in well-defined circumstances, into an inflationary equation of state. We thus realize the inflationary scenario without the aid of an inflaton field. As the radiation cools down below the Planck temperature, inflation gracefully exits into a standard Big Bang universe, dispensing with a period of reheating. Thermal fluctuations in the radiation bath will in this case generate curvature fluctuations on cosmological scales whose amplitude and spectrum can be tuned to agree with observations.Comment: 4 pages, 3 figure

    Supersymmetry and Branes in M-theory Plane-waves

    Get PDF
    We study brane embeddings in M-theory plane-waves and their supersymmetry. The relation with branes in AdS backgrounds via the Penrose limit is also explored. Longitudinal planar branes are originated from AdS branes while giant gravitons of AdS spaces become spherical branes which are realized as fuzzy spheres in the massive matrix theory.Comment: 17 pages, JHEP style, references added, typos correcte

    Wormholes and Ringholes in a Dark-Energy Universe

    Get PDF
    The effects that the present accelerating expansion of the universe has on the size and shape of Lorentzian wormholes and ringholes are considered. It is shown that, quite similarly to how it occurs for inflating wormholes, relative to the initial embedding-space coordinate system, whereas the shape of the considered holes is always preserved with time, their size is driven by the expansion to increase by a factor which is proportional to the scale factor of the universe. In the case that dark energy is phantom energy, which is not excluded by present constraints on the dark-energy equation of state, that size increase with time becomes quite more remarkable, and a rather speculative scenario is here presented where the big rip can be circumvented by future advanced civilizations by utilizing sufficiently grown up wormholes and ringholes as time machines that shortcut the big-rip singularity.Comment: 11 pages, RevTex, to appear in Phys. Rev.

    A Note on D-brane - Anti-D-brane Interactions in Plane Wave Backgrounds

    Full text link
    We study aspects of the interaction between a D-brane and an anti-D-brane in the maximally supersymmetric plane wave background of type IIB superstring theory, which is equipped with a mass parameter mu. An early such study in flat spacetime (mu=0) served to sharpen intuition about D-brane interactions, showing in particular the key role of the ``stringy halo'' that surrounds a D-brane. The halo marks the edge of the region within which tachyon condensation occurs, opening a gateway to new non-trivial vacua of the theory. It seems pertinent to study the fate of the halo for non--zero mu. We focus on the simplest cases of a Lorentzian brane with p=1 and an Euclidean brane with p=-1, the D--instanton. For the Lorentzian brane, we observe that the halo is unaffected by the presence of non--zero mu. This most likely extends to other (Lorentzian) p. For the Euclidean brane, we find that the halo is affected by non-zero mu. As this is related to subtleties in defining the exchange amplitude between Euclidean branes in the open string sector, we expect this to extend to all Euclidean branes in this background.Comment: 14 pages, LaTeX, 2 eps figures. v2: a reference and some clarifying remarks added; v3: Considerably revised version; halo unaffected by plane wave background for Lorentzian branes, but Euclidean branes' halo is modifie

    Multiple Λ\LambdaCDM cosmology with string landscape features and future singularities

    Full text link
    Multiple Λ\LambdaCDM cosmology is studied in a way that is formally a classical analog of the Casimir effect. Such cosmology corresponds to a time-dependent dark fluid model or, alternatively, to its scalar field presentation, and it motivated by the string landscape picture. The future evolution of the several dark energy models constructed within the scheme is carefully investigated. It turns out to be almost always possible to choose the parameters in the models so that they match the most recent and accurate astronomical values. To this end, several universes are presented which mimick (multiple) Λ\LambdaCDM cosmology but exhibit Little Rip, asymptotically de Sitter, or Type I, II, III, and IV finite-time singularity behavior in the far future, with disintegration of all bound objects in the cases of Big Rip, Little Rip and Pseudo-Rip cosmologies.Comment: LaTeX 11 pages, 10 figure

    Twisted Backgrounds, PP-Waves and Nonlocal Field Theories

    Full text link
    We study partially supersymmetric plane-wave like deformations of string theories and M-theory on brane backgrounds. These deformations are dual to nonlocal field theories. We calculate various expectation values of configurations of closed as well as open Wilson loops and Wilson surfaces in those theories. We also discuss the manifestation of the nonlocality structure in the supergravity backgrounds. A plane-wave like deformation of little string theory has also been studied.Comment: 46 pages, changed to JHEP forma

    Gravitational Coupling and Dynamical Reduction of The Cosmological Constant

    Full text link
    We introduce a dynamical model to reduce a large cosmological constant to a sufficiently small value. The basic ingredient in this model is a distinction which has been made between the two unit systems used in cosmology and particle physics. We have used a conformal invariant gravitational model to define a particular conformal frame in terms of large scale properties of the universe. It is then argued that the contributions of mass scales in particle physics to the vacuum energy density should be considered in a different conformal frame. In this manner, a decaying mechanism is presented in which the conformal factor appears as a dynamical field and plays a key role to relax a large effective cosmological constant. Moreover, we argue that this model also provides a possible explanation for the coincidence problem.Comment: To appear in GR

    Planck-scale quintessence and the physics of structure formation

    Get PDF
    In a recent paper we considered the possibility of a scalar field providing an explanation for the cosmic acceleration. Our model had the interesting properties of attractor-like behavior and having its parameters of O(1) in Planck units. Here we discuss the effect of the field on large scale structure and CMB anisotropies. We show how some versions of our model inspired by "brane" physics have novel features due to the fact that the scalar field has a significant role over a wider range of redshifts than for typical "dark energy" models. One of these features is the additional suppression of the formation of large scale structure, as compared with cosmological constant models. In light of the new pressures being placed on cosmological parameters (in particular H_0) by CMB data, this added suppression allows our "brane" models to give excellent fits to both CMB and large scale structure data.Comment: 18 pages, 12 figures, submitted to PR
    • …
    corecore