8,749 research outputs found

    CT-duality as a local property of the world-sheet

    Full text link
    In the present article, we study the local features of the world-sheet in the case when probe bosonic string moves in antisymmetric background field. We generalize the geometry of surfaces embedded in space-time to the case when the torsion is present. We define the mean extrinsic curvature for spaces with Minkowski signature and introduce the concept of mean torsion. Its orthogonal projection defines the dual mean extrinsic curvature. In this language, the field equation is just the equality of mean extrinsic curvature and extrinsic mean torsion, which we call CT-duality. To the world-sheet described by this relation we will refer as CT-dual surface.Comment: Latex, 15 pages, 2 Figure

    Vertex Operators in 2K Dimensions

    Get PDF
    A formula is proposed which expresses free fermion fields in 2K dimensions in terms of the Cartan currents of the free fermion current algebra. This leads, in an obvious manner, to a vertex operator construction of nonabelian free fermion current algebras in arbitrary even dimension. It is conjectured that these ideas may generalize to a wide class of conformal field theories.Comment: Minor change in notation. Change in references

    Entropy of gravitating systems: scaling laws versus radial profiles

    Get PDF
    Through the consideration of spherically symmetric gravitating systems consisting of perfect fluids with linear equation of state constrained to be in a finite volume, an account is given of the properties of entropy at conditions in which it is no longer an extensive quantity (it does not scale with system's size). To accomplish this, the methods introduced by Oppenheim [1] to characterize non-extensivity are used, suitably generalized to the case of gravitating systems subject to an external pressure. In particular when, far from the system's Schwarzschild limit, both area scaling for conventional entropy and inverse radius law for the temperature set in (i.e. the same properties of the corresponding black hole thermodynamical quantities), the entropy profile is found to behave like 1/r, being r the area radius inside the system. In such circumstances thus entropy heavily resides in internal layers, in opposition to what happens when area scaling is gained while approaching the Schwarzschild mass, in which case conventional entropy lies at the surface of the system. The information content of these systems, even if it globally scales like the area, is then stored in the whole volume, instead of packed on the boundary.Comment: 16 pages, 11 figures. v2: addition of some references; the stability of equilibrium configurations is readdresse

    Interacting Strings in Matrix String Theory

    Get PDF
    It is here explained how the Green-Schwarz superstring theory arises from Matrix String Theory. This is obtained as the strong YM-coupling limit of the theory expanded around its BPS instantonic configurations, via the identification of the interacting string diagram with the spectral curve of the relevant configuration. Both the GS action and the perturbative weight gs−χg_s^{-\chi}, where χ\chi is the Euler characteristic of the world-sheet surface and gsg_s the string coupling, are obtained.Comment: 11 pages, no figures, two references adde

    Comments on information loss and remnants

    Full text link
    The information loss and remnant proposals for resolving the black hole information paradox are reconsidered. It is argued that in typical cases information loss implies energy loss, and thus can be thought of in terms of coupling to a spectrum of ``fictitious'' remnants. This suggests proposals for information loss that do not imply planckian energy fluctuations in the low energy world. However, if consistency of gravity prevents energy non-conservation, these remnants must then be considered to be real. In either case, the catastrophe corresponding to infinite pair production remains a potential problem. Using Reissner-Nordstrom black holes as a paradigm for a theory of remnants, it is argued that couplings in such a theory may give finite production despite an infinite spectrum. Evidence for this is found in analyzing the instanton for Schwinger production; fluctuations from the infinite number of states lead to a divergent stress tensor, spoiling the instanton calculation. Therefore naive arguements for infinite production fail.Comment: 30 pages (harvmac l mode) UCSBTH-93-35 (minor reference and typo corrections

    Definition of ground test for verification of large space structure control

    Get PDF
    Control theory and design, dynamic system modelling, and simulation of test scenarios are the main ideas discussed. The overall effort is the achievement at Marshall Space Flight Center of a successful ground test experiment of a large space structure. A simplified planar model of ground test experiment of a large space structure. A simplified planar model of ground test verification was developed. The elimination from that model of the uncontrollable rigid body modes was also examined. Also studied was the hardware/software of computation speed

    Nonsingular Lagrangians for Two Dimensional Black Holes

    Get PDF
    We introduce a large class of modifications of the standard lagrangian for two dimensional dilaton gravity, whose general solutions are nonsingular black holes. A subclass of these lagrangians have extremal solutions which are nonsingular analogues of the extremal Reissner-Nordstrom spacetime. It is possible that quantum deformations of these extremal solutions are the endpoint of Hawking evaporation when the models are coupled to matter, and that the resulting evolution may be studied entirely within the framework of the semiclassical approximation. Numerical work to verify this conjecture is in progress. We point out however that the solutions with non-negative mass always contain Cauchy horizons, and may be sensitive to small perturbations.Comment: 27 pages, three figures, RU-92-61. (Replaced version contains some corrections to incorrect equations. The zero temperature extremal geometry (the conjectured end-point of the Hawking evaporation) is not as stated in the previous version, but rather is a nonsingular analogue of the zero temperature M2=Q2M^2 = Q^2 Reissner-Nordstrom space-time.

    Black Holes with a Massive Dilaton

    Get PDF
    The modifications of dilaton black holes which result when the dilaton acquires a mass are investigated. We derive some general constraints on the number of horizons of the black hole and argue that if the product of the black hole charge QQ and the dilaton mass mm satisfies Qm<O(1)Q m < O(1) then the black hole has only one horizon. We also argue that for Qm>O(1)Q m > O(1) there may exist solutions with three horizons and we discuss the causal structure of such solutions. We also investigate the possible structures of extremal solutions and the related problem of two-dimensional dilaton gravity with a massive dilaton.Comment: 36 pages with 5 figures (as uuencoded compressed tar file) (revised version has one major change in bound on mass for extremal solution and minor typos fixed), harvma

    Moyal Brackets in M-Theory

    Get PDF
    The infinite limit of Matrix Theory in 4 and 10 dimensions is described in terms of Moyal Brackets. In those dimensions there exists a Bogomol'nyi bound to the Euclideanized version of these equations, which guarantees that solutions of the first order equations also solve the second order Matrix Theory equations. A general construction of such solutions in terms of a representation of the target space co-ordinates as non-local spinor bilinears, which are generalisations of the standard Wigner functions on phase space, is given.Comment: 10 pages, Latex, no figures. References altered, typos correcte
    • 

    corecore