6 research outputs found
Ampliando a brecha: A desigualdade na distribuição de recursos para a educação científica nos níveis K-12
Inequalities in educational opportunity are well documented. Regardless of the nature of the disadvantage—low income, underrepresented minority status, or prior achievement—students from backgrounds associated with a given disadvantage have less access to educational opportunities. In this article, we use data from the 2012 National Survey of Science and Mathematics Education to explore how resources are allocated for science instruction specifically. We focus on how three kinds of resources—well-prepared teachers, material resources, and instruction itself—are allocated to classes that are homogeneously grouped by prior achievement level. Regardless of the resource, we find that classes of students with low prior achievement (as perceived by their teachers) have less access. Some of the differences are striking, particularly regarding access to material resources, while others are more subtle. There is also evidence that some policies do not impact teachers equally. For example, time allowed for teacher professional development is perceived differently by teachers in terms of its impact depending on the achievement level of students in the class. The study supports the assertion that what is known about ability grouping in general applies in science instruction specifically. When students with low prior achievement are grouped together, their classes have less access to critical resources for science learning opportunities, potentially widening the gap between them and their higher-achieving peers.Las desigualdades en las oportunidades educativas están bien documentadas. Independientemente de la naturaleza de la desventaja -- baja renta, condición de minoría subrepresentada, o de logros anteriores-- estudiantes asociados con alguna condición de desventaja tienen menos acceso a oportunidades educativas. En este artículo, utilizamos datos de la Encuesta Nacional de Ciencia y Educación Matemática de 2012 para explorar cómo se asignan los recursos para la enseñanza de las ciencias. Nos centramos en cómo tres tipos de recursos -maestros bien preparados, recursos materiales, y la instrucción en sí, se asignan a las clases que se agrupan homogéneamente por nivel de logro anterior. Independientemente del recurso, nos encontramos con que las clases de estudiantes con bajo rendimiento previo (según la percepción de sus maestros) tienen menos acceso. Algunas de las diferencias son sorprendentes, sobre todo con respecto al acceso a los recursos materiales, mientras que otras son más sutiles. También hay evidencia de que algunas políticas no afectan a los docentes por igual. Por ejemplo, el tiempo permitido para el desarrollo profesional de los docentes que se percibe de manera diferente por los profesores en términos de su impacto en función del nivel de logro de los estudiantes en la clase. El estudio apoya la afirmación de que lo que se sabe acerca de la capacidad de agrupación en general se aplica en la enseñanza de la ciencia en particular. Cuando los estudiantes con bajo rendimiento son agrupados, sus clases tienen menos acceso a los recursos críticos para ampliar las oportunidades de aprendizaje de ciencias, lo que podría incrementar la brecha entre ellos y sus compañeros de mayores logros educativos.As desigualdades de oportunidades educacionais estão bem documentadas. Independentemente da natureza da desvantagem - baixa renda, status de minoria sub-representada ou resultados anteriores - estudantes associados a uma condição de desvantagem têm menos acesso a oportunidades educacionais. Neste artigo, usamos dados da Pesquisa Nacional de Ciência e Educação Matemática de 2012 para explorar a forma como os recursos são alocados para a educação científica. Nós nos concentramos em três tipos de- recursos --professores bem preparados, recursos materiais, e da própria instrução, e como são atribuídos a classes agrupados por nível de resultados anteriores. Independentemente da aplicação, verificamos que as turmas de alunos com baixo aproveitamento anterior (pela percepção dos professores) têm menos acesso. Algumas das diferenças são marcantes, especialmente no que diz respeito ao acesso a recursos materiais, enquanto outros são mais sutis. Há também evidências de que algumas políticas não afetam docentes da mesma maneira. Por exemplo, o tempo permitido para o desenvolvimento profissional de professores é percebido de forma diferente pelos professores em termos do seu impacto sobre o nível de desempenho do aluno na sala de aula. O estudo apoia o que se sabe geralmente sobre as politicas de agrupamento aplicado no ensino da ciência em particular. Quando os alunos de baixo desempenho são agrupados, suas aulas têm menos acesso a recursos essenciais para aumentar as oportunidades de aprendizagem das ciências, o que poderia aumentar a distância entre eles e os seus pares mais alto nível de instrução
Examining PCK research in the context of current policy initiatives
Teacher education goals, standards, and policies were once considered to be mostly under the purview of university programs. However, with the advent of international tests, articulation of standards both for student achievement and teacher performance, and calls for more accountability, education policy is increasingly established by a wide range of stakeholders that extend beyond the traditional education community. These stakeholders are asking many questions related to who is qualified to teach a particular subject area; what types of knowledge, skills, and supports are needed for teachers to be highly effective; and what are the most appropriate ways to assess teacher quality? Despite these questions, recent research on teacher learning has not focused strongly on current policy issues (Sleeter, 2014). It has long been proposed that pedagogical content knowledge (PCK) represents the professional knowledge base for teaching subject matter (Shulman, 1987). The construct has helped science education researchers understand how knowledge for teaching science is different than knowledge of science or knowledge for teaching other disciplines, and has helped frame the curriculum of teacher education programs. To date, much of the research has focused on different methods for documenting teachers’ PCK and various approaches to developing it, but little effort has been devoted to considering the implications of this research in the context of current policy initiatives that are affecting education systems. The 2012 PCK Summit challenged participants to not only consider their current work, but also discuss emerging issues for future PCK research. Due to a collective interest in the policy contexts that frame our work in research and teacher education, the authors of this chapter volunteered to participate in a dedicated forum on exploring how PCK research connects to policy. This chapter represents the outcome of those initial discussions and subsequent examination of policy issues and recent PCK research. The purpose of this chapter is to explore connections between PCK research and policy areas related to science teacher development. To accomplish this, it is necessary to explain our view of PCK. We ascribe to Loughran, Berry, and Mulhall’s (2012) definition of PCK as “the knowledge that teachers develop over time, and through experience, about how to teach particular content in particular ways in order to lead to enhanced student understanding” (p. 9). In the following sections, we consider four major policy areas: (1) pre-service teacher education; (2) curriculum reform; (3) professional development; and (4) teacher evaluation. For each area, we define examples of current policy issues, discuss policy implications based on recent research, and posit future research questions