111 research outputs found

    Fermiology and electronic homogeneity of the superconducting overdoped cuprate Tl-2201 revealed by quantum oscillations

    Full text link
    We report an angular quantum oscillation study of Tl_2Ba_2CuO_{6+delta} for two different doping levels (Tc = 10K and 26 K) and determine the Fermi surface size and topology in considerable detail. Our results show that Fermi liquid behavior is not confined to the edge of the superconducting dome and is robust up to at least T_c^{max}/3.5. Superconductivity is found to survive up to a larger doping p_c = 0.31 than in La_{2-x}Sr_xCuO_4. Our data imply that electronic inhomogeneity does not play a significant role in the loss of superconductivity and superfluid density in overdoped cuprates, and point towards a purely magnetic or electronic pairing mechanismComment: 4 page

    Healthcare seeking for diarrhoea, malaria and pneumonia among children in four poor rural districts in Sierra Leone in the context of free health care: results of a cross-sectional survey

    Get PDF
    BACKGROUND: To plan for a community case management (CCM) program after the implementation of the Free Health Care Initiative (FHCI), we assessed health care seeking for children with diarrhoea, malaria and pneumonia in 4 poor rural districts in Sierra Leone. METHODS: In July 2010 we undertook a cross-sectional household cluster survey and qualitative research. Caregivers of children under five years of age were interviewed about healthcare seeking. We evaluated the association of various factors with not seeking health care by obtaining adjusted odds ratios and 95% confidence limits using a multivariable logistic regression model. Focus groups and in-depth interviews of young mothers, fathers and older caregivers in 12 villages explored household recognition and response to child morbidity. RESULTS: The response rate was 93% (n=5951). Over 85% of children were brought for care for all conditions. However, 10.8% of those with diarrhoea, 36.5% of those with presumed pneumonia and 41.0% of those with fever did not receive recommended treatment. In the multivariable models, use of traditional treatments was significantly associated with not seeking outside care for all three conditions. Qualitative data showed that traditional treatments were used due to preferences for locally available treatments and barriers to facility care that remain even after FHCI. CONCLUSION: We found high healthcare seeking rates soon after the FHCI; however, many children do not receive recommended treatment, and some are given traditional treatment instead of seeking outside care. Facility care needs to be improved and the CCM program should target those few children still not accessing care

    Evolution of the Fermi surface of BaFe_2(As_{1-x}P_x)_2 on entering the superconducting dome

    Get PDF
    Using the de Haas-van Alphen effect we have measured the evolution of the Fermi surface of BaFe_2(As_{1-x}P_x)_2 as function of isoelectric substitution (As/P) for 0.41<x<1 (T_c up to 25 K). We find that the volume of electron and hole Fermi surfaces shrink linearly with decreasing x. This shrinking is accompanied by a strong increase in the quasiparticle effective mass as x is tuned toward the maximum T_c. It is likely that these trends originate from the many-body interaction which give rise to superconductivity, rather than the underlying one-electron bandstructure.Comment: 4 page

    Indication for the coexistence of closed orbit and quantum interferometer with the same cross section in the organic metal (ET)4(H3O)[Fe(C2O4)3].C6H4Cl2: Persistence of SdH oscillations above 30 K

    Full text link
    Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) oscillations spectra of the quasi-two dimensional charge transfer salt β\beta"-(ET)4_4(H3_3O)[Fe(C2_2O4_4)3_3]\cdotC6_6H4_4Cl2_2 have been investigated in pulsed magnetic fields up to 54 T. The data reveal three basic frequencies Fa_a, Fb_b and Fba_{b - a}, which can be interpreted on the basis of three compensated closed orbits at low temperature. However a very weak thermal damping of the Fourier component Fb_b, with the highest amplitude, is evidenced for SdH spectra above about 6 K. As a result, magnetoresistance oscillations are observed at temperatures higher than 30 K. This feature, which is not observed for dHvA oscillations, is in line with quantum interference, pointing to a Fermi surface reconstruction in this compound.Comment: published in Eur. Phys. J. B 71 203 (2009

    Thermal conductivity across the metal-insulator transition in single crystalline hyperkagome Na3+x_{3+x}Ir3_3O8_8

    Get PDF
    The hyperkagome antiferromagnet Na4_{4}Ir3_3O8_8 represents the first genuine candidate for the realisation of a three-dimensional quantum spin-liquid. It can also be doped towards a metallic state, thus offering a rare opportunity to explore the nature of the metal-insulator transition in correlated, frustrated magnets. Here we report thermodynamic and transport measurements in both metallic and weakly insulating single crystals down to 150 mK. While in the metallic sample the phonon thermal conductivity (κph\kappa^{ph}) is almost in the boundary scattering regime, in the insulating sample we find a large reduction κph\kappa^{ph} over a very wide temperature range. This result can be ascribed to the scattering of phonons off nanoscale disorder or off the gapless magnetic excitations that are seen in the low-temperature specific heat. This works highlights the peculiarity of the metal-insulator transition in Na3+x_{3+x}Ir3_3O8_8 and demonstrates the importance of the coupling between lattice and spin degrees of freedom in the presence of strong spin-orbit coupling.Comment: 6 pages, 4 figure

    Fermi surface of superconducting LaFePO determined by quantum oscillations

    Full text link
    We report extensive measurements of quantum oscillations in the normal state of the Fe-based superconductor LaFePO, (Tc ~ 6 K) using low temperature torque magnetometry and transport in high static magnetic fields (45 T). We find that the Fermi surface is in broad agreement with the band-structure calculations with the quasiparticle mass enhanced by a factor ~2. The quasi-two dimensional Fermi surface consist of nearly-nested electron and hole pockets, suggesting proximity to a spin/charge density wave instability.Comment: to appear in Physical Review Letter

    From high temperature supercondutivity to quantum spin liquid: progress in strong correlation physics

    Full text link
    This review gives a rather general discussion of high temperature superconductors as an example of a strongly correlated material. The argument is made that in view of the many examples of unconventional superconductors discovered in the past twenty years, we should no longer be surprised that superconductivity emerges as a highly competitive ground state in systems where Coulomb repulsion plays a dominant role. The physics of the cuprates is discussed, emphasizing the unusual pseudogap phase in the underdoped region. It is argued that the resonating valence bond (RVB) picture, as formulated using gauge theory with fermionic and bosonic matter fields, gives an adequate physical understanding, even though many details are beyond the powers of current calculational tools. The recent discovery of quantum oscillations in a high magnetic field is discussed in this context. Meanwhile, the problem of the quantum spin liquid (a spin system with antiferromagnetic coupling which refuses to order even at zero temperature) is a somewhat simpler version of the high TcT_c problem where significant progress has been made recently. It is understood that the existence of matter fields can lead to de-confinement of the U(1) gauge theory in 2+1 dimensions, and novel new particles (called fractionalized particles), such as fermionic spinons which carry spin 12{1\over 2} and no charge, and gapless gauge bosons can emerge to create a new critical state at low energies. We even have a couple of real materials where such a scenario may be realized experimentally. The article ends with answers to questions such as: what limits TcT_c if pairing is driven by an electronic energy scale? why is the high TcT_c problem hard? why is there no consensus? and why is the high TcT_c problem important?Comment: Submitted as "Key Issue" essay for Report of Progress in Physics; v2: References are added and typos correcte

    Measuring fidelity, feasibility, costs: An implementation evaluation of a cluster-controlled trial of group antenatal care in rural Nepal

    Full text link
    Background: Access to high-quality antenatal care services has been shown to be beneficial for maternal and child health. In 2016, the WHO published evidence-based recommendations for antenatal care that aim to improve utilization, quality of care, and the patient experience. Prior research in Nepal has shown that a lack of social support, birth planning, and resources are barriers to accessing services in rural communities. The success of CenteringPregnancy and participatory action women's groups suggests that group care models may both improve access to care and the quality of care delivered through women's empowerment and the creation of social networks. We present a group antenatal care model in rural Nepal, designed and implemented by the healthcare delivery organization Nyaya Health Nepal, as well as an assessment of implementation outcomes. Methods: The study was conducted at Bayalata Hospital in Achham, Nepal, via a public private partnership between the Nepali non-profit, Nyaya Health Nepal, and the Ministry of Health and Population, with financial and technical assistance from the American non-profit, Possible. We implemented group antenatal care as a prospective non-randomized cluster-controlled, type I hybrid effectiveness-implementation study in six village clusters. The implementation approach allows for iterative improvement in design, making changes to improve the quality of the intervention. Assessments of implementation process and model fidelity were undertaken using a mobile checklist completed by nurse supervisors, and observation forms completed by program leadership. We evaluated data quarterly using descriptive statistics to identify trends. Qualitative interviews and team communications were analyzed through immersion crystallization to identify major themes that evolved during the implementation process. Results: A total of 141 group antenatal sessions were run during the study period. This paper reports on implementation results, whereas we analyze and present patient-level effectiveness outcomes in a complementary paper in this journal. There was high process fidelity to the model, with 85.7% (95% CI 77.1-91.5%) of visits completing all process elements, and high content fidelity, with all village clusters meeting the minimum target frequency for 80% of topics. The annual per capita cost for group antenatal care was 0.50 USD. Qualitative analysis revealed the compromise of stable gestation-matched composition of the group members in order to make the intervention feasible. Major adaptations were made in training, documentation, feedback and logistics. Conclusion: Group antenatal care provided in collaboration with local government clinics has the potential to provide accessible and high quality antenatal care to women in rural Nepal. The intervention is a feasible and affordable alternative to individual antenatal care. Our experience has shown that adaptation from prior models was important for the program to be successful in the local context within the national healthcare system. Trial registration: ClinicalTrials.gov Identifier: NCT02330887, registered 01/05/2015, retroactively registered

    Directional field-induced metallization of quasi-one-dimensional Li0.9_{0.9}Mo6_6O17_{17}

    Full text link
    We report a detailed magnetotransport study of the highly anisotropic quasi-one-dimensional oxide Li0.9_{0.9}Mo6_6O17_{17} whose in-chain electrical resistivity diverges below a temperature TminT_{\rm min} \sim 25 K. For T<TminT < T_{\rm min}, a magnetic field applied parallel to the conducting chain induces a large negative magnetoresistance and ultimately, the recovery of a metallic state. We show evidence that this insulator/metal crossover is a consequence of field-induced suppression of a density-wave gap in a highly one-dimensional conductor. At the highest fields studied, there is evidence for the possible emergence of a novel superconducting state with an onset temperature Tc>T_c > 10 K.Comment: 4 pages, 2 figures. To appear in Physical Review Letter
    corecore