159 research outputs found
On the transport and thermodynamic properties of quasi-two-dimensional purple bronzes AMoO (A=Na, K)
We report a comparative study of the specific heat, electrical resistivity
and thermal conductivity of the quasi-two-dimensional purple bronzes
NaMoO and KMoO, with special emphasis on
the behavior near their respective charge-density-wave transition temperatures
. The contrasting behavior of both the transport and the thermodynamic
properties near is argued to arise predominantly from the different
levels of intrinsic disorder in the two systems. A significant proportion of
the enhancement of the thermal conductivity above in
NaMoO, and to a lesser extent in KMoO, is
attributed to the emergence of phason excitations.Comment: 8 pages, 6 figures, To appear in Physical Review
Fermiology and electronic homogeneity of the superconducting overdoped cuprate Tl-2201 revealed by quantum oscillations
We report an angular quantum oscillation study of Tl_2Ba_2CuO_{6+delta} for
two different doping levels (Tc = 10K and 26 K) and determine the Fermi surface
size and topology in considerable detail. Our results show that Fermi liquid
behavior is not confined to the edge of the superconducting dome and is robust
up to at least T_c^{max}/3.5. Superconductivity is found to survive up to a
larger doping p_c = 0.31 than in La_{2-x}Sr_xCuO_4. Our data imply that
electronic inhomogeneity does not play a significant role in the loss of
superconductivity and superfluid density in overdoped cuprates, and point
towards a purely magnetic or electronic pairing mechanismComment: 4 page
Quantum oscillations in the parent pnictide BaFeAs : itinerant electrons in the reconstructed state
We report quantum oscillation measurements that enable the direct observation
of the Fermi surface of the low temperature ground state of \ba122. From these
measurements we characterize the low energy excitations, revealing that the
Fermi surface is reconstructed in the antiferromagnetic state, but leaving
itinerant electrons in its wake. The present measurements are consistent with a
conventional band folding picture of the antiferromagnetic ground state,
placing important limits on the topology and size of the Fermi surface.Comment: 5 pages, 3 figure
Fermi-surface reconstruction and two-carrier model for the Hall effect in YBa2Cu4O8
Pulsed field measurements of the Hall resistivity and magnetoresistance of
underdoped YBa2Cu4O8 are analyzed self-consistently using a simple model based
on coexisting electron and hole carriers. The resultant mobilities and Hall
numbers are found to vary markedly with temperature. The conductivity of the
hole carriers drops by one order of magnitude below 30 K, explaining the
absence of quantum oscillations from these particular pockets. Meanwhile the
Hall coefficient of the electron carriers becomes strongly negative below 50 K.
The overall quality of the fits not only provides strong evidence for
Fermi-surface reconstruction in Y-based cuprates, it also strongly constrains
the type of reconstruction that might be occurring.Comment: 5 pages, 4 figures, updated after publication in Physical Review B
(Rapid Communication
Topological change of the Fermi surface in ternary iron-pnictides with reduced c/a ratio: A dHvA study of CaFe2P2
We report a de Haas-van Alphen effect study of the Fermi surface of CaFe2P2
using low temperature torque magnetometry up to 45 T. This system is a close
structural analogue of the collapsed tetragonal non-magnetic phase of CaFe2As2.
We find the Fermi surface of CaFe2P2 to differ from other related ternary
phosphides in that its topology is highly dispersive in the c-axis, being
three-dimensional in character and with identical mass enhancement on both
electron and hole pockets (~1.5). The dramatic change in topology of the Fermi
surface suggests that in a state with reduced (c/a) ratio, when bonding between
pnictogen layers becomes important, the Fermi surface sheets are unlikely to be
nested
Enhanced electron correlations in the new binary stannide PdSn4: a homologue of the Dirac nodal arc semimetal PtSn4
The advent of nodal-line semi-metals, i.e. systems in which the conduction
and valence bands cross each other along a closed trajectory (line or loop)
inside the Brillouin zone, has opened up a new arena for the exploration of
topological condensed matter in which, due to a vanishing density of states
near the Fermi level, electron correlation effects may also play an important
role. In spite of this conceptual richness however, material realization of
nodal-line (loop) fermions is rare, with PbTaSe2, ZrSiS and PtSn4 the only
promising known candidates. Here we report the synthesis and physical
properties of a new compound PdSn4 that is isostructural with PtSn4 yet
possesses quasiparticles with significantly enhanced effective masses. In
addition, PdSn4 displays an unusual polar angular magnetoresistance which at a
certain field orientation, varies linearly with field up to 55 Tesla. Our study
suggests that, in association with its homologue PtSn4 whose low-lying
excitations were recently claimed to possess Dirac node arcs, PdSn4 may be a
promising candidate in the search for novel topological states with enhanced
correlation effects.Comment: 6 figures, 1 tabl
- …