4 research outputs found

    Unconventional quantum oscillations and evidence of non-trivial electronic states in quasi-two-dimensional electron system at complex oxide interfaces

    Full text link
    The simultaneous occurrence of electric-field controlled superconductivity and spin-orbit interaction makes two-dimensional electron systems (2DES) constructed from perovskite transition metal oxides promising candidates for the next generation of spintronics and quantum computing. It is, however, essential to understand the electronic bands thoroughly and verify the predicted electronic states experimentally in these 2DES to advance technological applications. Here, we present novel insights into the electronic states of the 2DES at oxide interfaces through comprehensive investigations of Shubnikov-de Haas oscillations in two different systems: EuO/KTaO3_3 (EuO/KTO) and LaAlO3_3/SrTiO3_3 (LAO/STO). To accurately resolve these oscillations, we conducted transport measurements in high magnetic fields up to 60 T and low temperatures down to 100 mK. For 2D confined electrons at both interfaces, we observed a progressive increase of oscillations frequency and cyclotron mass with the magnetic field. We interpret these intriguing findings by considering the existence of non-trivial electronic bands, for which the EkE-k dispersion incorporates both linear and parabolic dispersion relations. In addition to providing experimental evidence for topological-like electronic states in KTO-2DES and STO-2DES, the unconventional oscillations presented in this study establish a new paradigm for quantum oscillations in 2DES based on perovskite transition metal oxides, where the oscillations frequency exhibits quadratic dependence on the magnetic field

    Lifshitz transition enabling superconducting dome around the quantum critical point in TiSe2_2

    Full text link
    Superconductivity often emerges as a dome around a quantum critical point (QCP) where long-range order is suppressed to zero temperature. So far, this has been mostly studied in magnetically ordered materials. By contrast, the interplay between charge order and superconductivity at a QCP is not fully understood. Here, we present resistance measurements proving that a dome of superconductivity surrounds the charge-density-wave (CDW) QCP in pristine samples of 1TT-TiSe2_2 tuned with hydrostatic pressure. Furthermore, we use quantum oscillation measurements to show that the superconductivity sets in at a Lifshitz transition in the electronic band structure. We use density functional theory to identify the Fermi pockets enabling superconductivity: large electron and hole pockets connected by the CDW wave vector Q\vec{Q} which emerge upon partial suppression of the zero-pressure CDW gap. Hence, we conclude that superconductivity is of interband type enabled by the presence of hole and electron bands connected by the CDW Q\vec{Q} vector. Earlier calculations show that interband interactions are repulsive, which suggests that unconventional s±_{\pm} superconductivity is realised in TiSe2_2 - similar to the iron pnictides. These results highlight the importance of Lifshitz transitions in realising unconventional superconductivity and help understand its interaction with CDW order in numerous materials.Comment: 21 pages, 5 figure

    Electronic subbands in the a-LaAlO3/KTaO3 interface revealed by quantum oscillations in high magnetic fields

    No full text
    10.1103/physrevresearch.3.033234Physical Review Research333323
    corecore