3 research outputs found

    Epidemiology and molecular characterization of the re-emerging measles virus among children and adults in the Haut-Ogooue, Gabon

    No full text
    Abstract Background Measles is one of the most infectious diseases with a high mortality rate worldwide. It is caused by the measles virus (MeV) which is a single stranded RNA virus with genetic diversity based on the nucleoprotein gene, including 24 genotypes. In Gabon, several outbreaks occurred in the past few years, especially in 2016 in Libreville and Oyem. A surveillance network of infectious diseases highlighted a measles outbreak which occurred in the south of Gabon from April to June 2017. Methods Clinical specimens of urine, blood, throat and nasal swabs were collected in the two main cities of the Haut-Ogooue province, Franceville and Moanda. Virological investigations based on real-time polymerase chain reaction for molecular diagnosis and conventional PCR for genotype identification were done. Results Specimens were collected from 139 suspected measles patients. A total of 46 (33.1%) children and adults were laboratory-confirmed cases among which 16 (34.8%) were unvaccinated, 16 (34.8%) had received one dose, and 11 (23.9%) had received two doses of the measles vaccine. Phylogenetic analysis revealed that all the sequences of the nucleoprotein gene belonged to genotype B3. Conclusions Measles infection was more commonly confirmed among those with one recorded dose compared to suspect cases with none, unknown or two recorded doses. The molecular characterization of the strains showed the circulation of the B3 genotype which is endemic on the African continent, thirty years after the B2 genotype was described in an outbreak in Libreville, the capital of Gabon. These findings highlight that surveillance and molecular investigation of measles should be continued in Gabon

    Screening and Whole Genome Sequencing of SARS-CoV-2 Circulating During the First Three Waves of the COVID-19 Pandemic in Libreville and the Haut-Ogooué Province in Gabon

    No full text
    International audienceSince the onset of the COVID-19 pandemic, the SARS-CoV-2 viral dynamics in Africa have been less documented than on other continents. In Gabon, a Central African country, a total number of 37,511 cases of COVID-19 and 281 deaths have been reported as of December 8, 2021. After the first COVID-19 case was reported on March 12, 2020, in the capital Libreville, the country experienced two successive waves. The first one, occurred in March 2020 to August 2020, and the second one in January 2021 to May 2021. The third wave began in September 2021 and ended in November 2021. In order to reduce the data gap regarding the dynamics of SARS-CoV-2 in Central Africa, we performed a retrospective genotyping study using 1,006 samples collected from COVID-19 patients in Gabon from 2020 to 2021. Using SARS-CoV-2 variant screening by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) and whole genome sequencing (WGS), we genotyped 809 SARS-CoV-2 samples through qRT-PCR and identified to generated 291 new genomes. It allowed us to describe specific mutations and changes in the SARS-CoV-2 variants in Gabon. The qRT-PCR screening of 809 positive samples from March 2020 to September 2021 showed that 119 SARS-CoV-2 samples (14.7%) were classified as VOC Alpha (Pangolin lineage B.1.1.7), one (0.1%) was a VOC Beta (B.1.351), and 198 (24.5 %) were VOC Delta (B.1.617.2), while 491 samples (60.7%) remained negative for the variants sought. The B1.1 variant was predominant during the first wave while the VOC Alpha dominated the second wave. The B1.617.2 Delta variant is currently the dominant variant of the third wave. Similarly, the analysis of the 291 genome sequences indicated that the dominant variant during the first wave was lineage B.1.1, while the dominant variants of the second wave were lineages B.1.1.7 (50.6%) and B.1.1.318 (36.4%). The third wave started with the circulation of the Delta variant (B.1.617). Finally, we compared these results to the SARS-CoV-2 sequences reported in other African, European, American and Asian countries. Sequences of Gabonese SARS-CoV-2 strains presented the highest similarities with those of France, Belgium and neighboring countries of Central Africa, as well as West Africa
    corecore