5,327 research outputs found

    Nuclear spin-lattice relaxation rate in the D+iD superconducting state: implications for CoO superconductor

    Full text link
    We calculated the nuclear spin-lattice relaxation rate 1/T11/T_1 for the D+iD superconducting state with impurities. We found that small amount of unitary impurities quickly produces the residual density of states inside the gap. As a result, the T-linear behavior in 1/T1_1 is observed at low temperatures. Our results show that the D+iD pairing symmetry of the superconducting state of Na0.35_{0.35}CoO2y_{2} \cdot yH2_2 O is compatible with recent 59^{59}Co 1/T1_1 experiments of several groups.Comment: 5 pages, 4 figures, minor change

    Collapse arrest and soliton stabilization in nonlocal nonlinear media

    Get PDF
    We investigate the properties of localized waves in systems governed by nonlocal nonlinear Schrodinger type equations. We prove rigorously by bounding the Hamiltonian that nonlocality of the nonlinearity prevents collapse in, e.g., Bose-Einstein condensates and optical Kerr media in all physical dimensions. The nonlocal nonlinear response must be symmetric, but can be of completely arbitrary shape. We use variational techniques to find the soliton solutions and illustrate the stabilizing effect of nonlocality.Comment: 4 pages with 3 figure

    Anomalous interaction of nonlocal solitons in media with competing nonlinearities

    Get PDF
    We theoretically investigate properties of individual bright spatial solitons and their interaction in nonlocal media with competing focusing and defocusing nonlinearities. We consider the general case with both nonlinear responses characterized by different strengths and degrees of nonlocality. We employ a variational approach to analytically describe soliton properties. In particular, we prove analytically that the interplay of focusing and defocusing nonlocal nonlinearities leads to attraction or repulsion of solitons depending on their separation distance. We then study the propagation and interaction of solitons using numerical simulations of the full model of beam propagation. The numerical simulations fully confirm our analytical results

    Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D2-3He or CD4-3He clustering gases

    Get PDF
    We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d, 3He)n, D(d, t)p and 3He(d, p)4He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time-of-flight, and (2) utilizing the ratio of neutron yield to proton yield from D(d, 3He)n and 3He(d, p)4He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.Comment: 16 pages, 6 figure

    Temperature measurements of fusion plasmas produced by petawatt laser-irradiated D2-3He or CD4-3He clustering gases

    Get PDF
    Two different methods have been employed to determine the plasma temperature in a laser-cluster fusion experiment on the Texas Petawatt laser. In the first, the temperature was derived from time-of-flight data of deuterium ions ejected from exploding D2 or CD4 clusters. In the second, the temperature was measured from the ratio of the rates of two different nuclear fusion reactions occurring in the plasma at the same time: D(d, 3He)n and 3He(d, p)4He. The temperatures determined by these two methods agree well, which indicates that: i) The ion energy distribution is not significantly distorted when ions travel in the disassembling plasma; ii) The kinetic energy of deuterium ions, especially the hottest part responsible for nuclear fusion, is well described by a near-Maxwellian distribution.Comment: 13 pages, 4 figure

    A simpler and more efficient algorithm for the next-to-shortest path problem

    Full text link
    Given an undirected graph G=(V,E)G=(V,E) with positive edge lengths and two vertices ss and tt, the next-to-shortest path problem is to find an stst-path which length is minimum amongst all stst-paths strictly longer than the shortest path length. In this paper we show that the problem can be solved in linear time if the distances from ss and tt to all other vertices are given. Particularly our new algorithm runs in O(VlogV+E)O(|V|\log |V|+|E|) time for general graphs, which improves the previous result of O(V2)O(|V|^2) time for sparse graphs, and takes only linear time for unweighted graphs, planar graphs, and graphs with positive integer edge lengths.Comment: Partial result appeared in COCOA201

    3D-printed PMMA preform for hollow-core POF drawing

    Get PDF
    In this paper we report the first, to our knowledge, 3D-printed hollow-core poly(methyl methacrylate) (PMMA) preform for polymer optical fibre drawing. It was printed of commercial PMMA by means of fused deposition modelling technique. The preform was drawn to cane, proving good enough quality of drawing process and the PMMA molecular weight to be appropriate for drawing. This ascertains that the manufacturing process provides preforms suitable for hollow-core fibre drawing. The paper focuses on maximisation of transparency of PMMA 3D printouts by optimising printing process parameters: nozzle temperature, printing speed and infill

    Energy funneling in a bent chain of Morse oscillators with long-range coupling

    Get PDF
    A bent chain of coupled Morse oscillators with long-range dispersive interaction is considered. Moving localized excitations may be trapped in the bending region. Thus chain geometry acts like an impurity. An energy funneling effect is observed in the case of random initial conditions.Comment: 6 pages, 12 figures. Submitted to Physical Review E, Oct. 13, 200

    Fano Effect through Parallel-coupled Double Coulomb Islands

    Full text link
    By means of the non-equilibrium Green function and equation of motion method, the electronic transport is theoretically studied through a parallel-coupled double quantum dots(DQD) in the presence of the on-dot Coulomb correlation, with an emphasis put on the quantum interference. It has been found that in the Coulomb blockage regime, the quantum interference between the bonding and antiboding DQD states or that between their Coulomb blockade counterparts may result in the Fano resonance in the conductance spectra, and the Fano peak doublet may be observed under certain non-equilibrium condition. The possibility of manipulating the Fano lineshape is predicted by tuning the dot-lead coupling and magnetic flux threading the ring connecting the dots and leads. Similar to the case without Coulomb interaction, the direction of the asymmetric tail of Fano lineshape can be flipped by the external field. Most importantly, by tuning the magnetic flux, the function of four relevant states can be interchanged, giving rise to the swap effect, which might play a key role as a qubit in the quantum computation.Comment: 7 pages, 5 figure
    corecore