5,327 research outputs found
Nuclear spin-lattice relaxation rate in the D+iD superconducting state: implications for CoO superconductor
We calculated the nuclear spin-lattice relaxation rate for the D+iD
superconducting state with impurities. We found that small amount of unitary
impurities quickly produces the residual density of states inside the gap. As a
result, the T-linear behavior in 1/T is observed at low temperatures. Our
results show that the D+iD pairing symmetry of the superconducting state of
NaCoOH O is compatible with recent Co 1/T
experiments of several groups.Comment: 5 pages, 4 figures, minor change
Collapse arrest and soliton stabilization in nonlocal nonlinear media
We investigate the properties of localized waves in systems governed by
nonlocal nonlinear Schrodinger type equations. We prove rigorously by bounding
the Hamiltonian that nonlocality of the nonlinearity prevents collapse in,
e.g., Bose-Einstein condensates and optical Kerr media in all physical
dimensions. The nonlocal nonlinear response must be symmetric, but can be of
completely arbitrary shape. We use variational techniques to find the soliton
solutions and illustrate the stabilizing effect of nonlocality.Comment: 4 pages with 3 figure
Anomalous interaction of nonlocal solitons in media with competing nonlinearities
We theoretically investigate properties of individual bright spatial solitons and their interaction in nonlocal media with competing focusing and defocusing nonlinearities. We consider the general case with both nonlinear responses characterized by different strengths and degrees of nonlocality. We employ a variational approach to analytically describe soliton properties. In particular, we prove analytically that the interplay of focusing and defocusing nonlocal nonlinearities leads to attraction or repulsion of solitons depending on their separation distance. We then study the propagation and interaction of solitons using numerical simulations of the full model of beam propagation. The numerical simulations fully confirm our analytical results
Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D2-3He or CD4-3He clustering gases
We report on experiments in which the Texas Petawatt laser irradiated a
mixture of deuterium or deuterated methane clusters and helium-3 gas,
generating three types of nuclear fusion reactions: D(d, 3He)n, D(d, t)p and
3He(d, p)4He. We measured the yields of fusion neutrons and protons from these
reactions and found them to agree with yields based on a simple cylindrical
plasma model using known cross sections and measured plasma parameters. Within
our measurement errors, the fusion products were isotropically distributed.
Plasma temperatures, important for the cross sections, were determined by two
independent methods: (1) deuterium ion time-of-flight, and (2) utilizing the
ratio of neutron yield to proton yield from D(d, 3He)n and 3He(d, p)4He
reactions, respectively. This experiment produced the highest ion temperature
ever achieved with laser-irradiated deuterium clusters.Comment: 16 pages, 6 figure
Temperature measurements of fusion plasmas produced by petawatt laser-irradiated D2-3He or CD4-3He clustering gases
Two different methods have been employed to determine the plasma temperature
in a laser-cluster fusion experiment on the Texas Petawatt laser. In the first,
the temperature was derived from time-of-flight data of deuterium ions ejected
from exploding D2 or CD4 clusters. In the second, the temperature was measured
from the ratio of the rates of two different nuclear fusion reactions occurring
in the plasma at the same time: D(d, 3He)n and 3He(d, p)4He. The temperatures
determined by these two methods agree well, which indicates that: i) The ion
energy distribution is not significantly distorted when ions travel in the
disassembling plasma; ii) The kinetic energy of deuterium ions, especially the
hottest part responsible for nuclear fusion, is well described by a
near-Maxwellian distribution.Comment: 13 pages, 4 figure
A simpler and more efficient algorithm for the next-to-shortest path problem
Given an undirected graph with positive edge lengths and two
vertices and , the next-to-shortest path problem is to find an -path
which length is minimum amongst all -paths strictly longer than the
shortest path length. In this paper we show that the problem can be solved in
linear time if the distances from and to all other vertices are given.
Particularly our new algorithm runs in time for general
graphs, which improves the previous result of time for sparse
graphs, and takes only linear time for unweighted graphs, planar graphs, and
graphs with positive integer edge lengths.Comment: Partial result appeared in COCOA201
3D-printed PMMA preform for hollow-core POF drawing
In this paper we report the first, to our knowledge, 3D-printed hollow-core poly(methyl methacrylate) (PMMA) preform for polymer optical fibre drawing. It was printed of commercial PMMA by means of fused deposition modelling technique. The preform was drawn to cane, proving good enough quality of drawing process and the PMMA molecular weight to be appropriate for drawing. This ascertains that the manufacturing process provides preforms suitable for hollow-core fibre drawing. The paper focuses on maximisation of transparency of PMMA 3D printouts by optimising printing process parameters: nozzle temperature, printing speed and infill
Energy funneling in a bent chain of Morse oscillators with long-range coupling
A bent chain of coupled Morse oscillators with long-range dispersive
interaction is considered. Moving localized excitations may be trapped in the
bending region. Thus chain geometry acts like an impurity. An energy funneling
effect is observed in the case of random initial conditions.Comment: 6 pages, 12 figures. Submitted to Physical Review E, Oct. 13, 200
Fano Effect through Parallel-coupled Double Coulomb Islands
By means of the non-equilibrium Green function and equation of motion method,
the electronic transport is theoretically studied through a parallel-coupled
double quantum dots(DQD) in the presence of the on-dot Coulomb correlation,
with an emphasis put on the quantum interference. It has been found that in the
Coulomb blockage regime, the quantum interference between the bonding and
antiboding DQD states or that between their Coulomb blockade counterparts may
result in the Fano resonance in the conductance spectra, and the Fano peak
doublet may be observed under certain non-equilibrium condition. The
possibility of manipulating the Fano lineshape is predicted by tuning the
dot-lead coupling and magnetic flux threading the ring connecting the dots and
leads. Similar to the case without Coulomb interaction, the direction of the
asymmetric tail of Fano lineshape can be flipped by the external field. Most
importantly, by tuning the magnetic flux, the function of four relevant states
can be interchanged, giving rise to the swap effect, which might play a key
role as a qubit in the quantum computation.Comment: 7 pages, 5 figure
- …