38 research outputs found

    Economic costs of protecting islands from invasive alien species

    Get PDF
    Funding Information: This work was conducted following a workshop funded by the AXA Research Fund Chair of Invasion Biology and is part of the AlienScenario project funded by BiodivERsA‐Belmont Forum Project “Alien Scenarios” (BL: FWF project no. I 4011‐B32). The authors also acknowledge the French National Research Agency (ANR‐14‐CE02‐0021) and the BNP‐Paribas Foundation Climate Initiative for funding the InvaCost project and enabling the construction of the database, with particular thanks to C. Diagne. T.W.B. acknowledges funding from the European Union's Horizon 2020 research and innovation program Marie Skłodowska‐Curie fellowship (grant 747120). J.F.L. thanks the Auburn University School of Forestry and Wildlife Sciences for travel support to attend the InvaCost workshop. Funding for E.A. came from the AXA Research Fund Chair of Invasion Biology of the University of Paris Saclay. We also thank J. Albers and 2 anonymous reviewers and for their comments that strengthened this manuscript. Publisher Copyright: © 2022 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.Peer reviewedPublisher PD

    Economic costs of invasive rodents worldwide : the tip of the iceberg

    Get PDF
    ACKNOWLEDGEMENTS We are extremely grateful to the organizers of the InvaCost workshop that allowed the genesis of this project, as well as to all contacted people who kindly answered to our requests for information about the costs of invasive rodents. We thank L. Nuninger and C. Assailly for their work in the initial project, and María Angulo and Nuria Cerdá for their help in generating the Fig. 3. Last, the authors thank Dr. Steffen Oppel and another anonymous reviewer for their thorough revision of the article which greatly improved it. Funding Information: This work was supported by the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for funding the Invacost project which allowed the construction of the InvaCost database. This work was initiated following a workshop funded by the AXA Research Fund Chair of Invasion Biology. This research was also funded through the 2017-2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme. Funds for Elena Angulo and Liliana Ballesteros-Mejia came from the AXA Research Fund Chair of Invasion Biology of University Paris Saclay. Christophe Diagne was funded by the BiodivERsA-Belmont Forum Project ‘‘Alien Scenarios’’ (BMBF/PT DLR 01LC1807C). Ross N. Cuthbert received funding from the Leverhulme Trust (ECF-2021-001). Thomas W. Bodey received funding from the European Union’s Horizon 2020 research and innovation programme Marie Skłodowska-Curie fellowship (Grant No. 747120). Jean Fantle-Lepczyk received travel support to attend the Invacost workshop from Auburn University School of Forestry and Wildlife Sciences. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Recent advances in availability and synthesis of the economic costs of biological invasions

    Get PDF
    Biological invasions are a global challenge that has received insufficient attention. Recently available cost syntheses have provided policy- and decision makers with reliable and up-to-date information on the economic impacts of biological invasions, aiming to motivate effective management. The resultant InvaCost database is now publicly and freely accessible and enables rapid extraction of monetary cost information. This has facilitated knowledge sharing, developed a more integrated and multidisciplinary network of researchers, and forged multidisciplinary collaborations among diverse organizations and stakeholders. Over 50 scientific publications so far have used the database and have provided detailed assessments of invasion costs across geographic, taxonomic, and spatiotemporal scales. These studies have provided important information that can guide future policy and legislative decisions on the management of biological invasions while simultaneously attracting public and media attention. We provide an overview of the improved availability, reliability, standardization, and defragmentation of monetary costs; discuss how this has enhanced invasion science as a discipline; and outline directions for future development

    Benefits do not balance costs of biological invasions

    Get PDF
    Acknowledgments LC was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (Capes)—(001). RNC is funded by the Leverhulme Trust (grant no. ECF-2021-001). CJAB is supported by the Australian Research Council (grant no. CE170100015). SB was supported by the Swiss National Science Foundation through grants no. 31003A_179491 and no. 31BD30_184114. FC is supported by the Biological Invasion Chair of the AXA Research Fund of University Paris Saclay and a salary from the French CNRS.Peer reviewe

    Damage costs from invasive species exceed management expenditure in nations experiencing lower economic activity

    Get PDF
    Financial disclosure The InvaCost project was funded by the French National Research Agency (ANR-14-CE02-0021), the BNP-Paribas Foundation Climate Initiative, the AXA Research Fund Chair of Invasion Biology of University Paris Saclay and by the BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios (AlienScenarios; BMBF/PT DLR 01LC1807C). M.K. received funding from the European Union's Horizon 2020 research programme under a Marie Skłodowska-Curie grant agreement 899546. C.J.A.B. acknowledges the Australian Research Council (CE170100015) for support. A.B. acknowledges Azim Premji University's grants programme (UNIV-RC00326) for support.Peer reviewe

    Community mobilisation with women's groups facilitated by Accredited Social Health Activists (ASHAs) to improve maternal and newborn health in underserved areas of Jharkhand and Orissa: study protocol for a cluster-randomised controlled trial

    Get PDF
    Background: Around a quarter of the world's neonatal and maternal deaths occur in India. Morbidity and mortality are highest in rural areas and among the poorest wealth quintiles. Few interventions to improve maternal and newborn health outcomes with government-mandated community health workers have been rigorously evaluated at scale in this setting.The study aims to assess the impact of a community mobilisation intervention with women's groups facilitated by ASHAs to improve maternal and newborn health outcomes among rural tribal communities of Jharkhand and Orissa.Methods/design: The study is a cluster-randomised controlled trial and will be implemented in five districts, three in Jharkhand and two in Orissa. The unit of randomisation is a rural cluster of approximately 5000 population. We identified villages within rural, tribal areas of five districts, approached them for participation in the study and enrolled them into 30 clusters, with approximately 10 ASHAs per cluster. Within each district, 6 clusters were randomly allocated to receive the community intervention or to the control group, resulting in 15 intervention and 15 control clusters. Randomisation was carried out in the presence of local stakeholders who selected the cluster numbers and allocated them to intervention or control using a pre-generated random number sequence. The intervention is a participatory learning and action cycle where ASHAs support community women's groups through a four-phase process in which they identify and prioritise local maternal and newborn health problems, implement strategies to address these and evaluate the result. The cycle is designed to fit with the ASHAs' mandate to mobilise communities for health and to complement their other tasks, including increasing institutional delivery rates and providing home visits to mothers and newborns. The trial's primary endpoint is neonatal mortality during 24 months of intervention. Additional endpoints include home care practices and health care-seeking in the antenatal, delivery and postnatal period. The impact of the intervention will be measured through a prospective surveillance system implemented by the project team, through which mothers will be interviewed around six weeks after delivery. Cost data and qualitative data are collected for cost-effectiveness and process evaluations

    Unevenly distributed biological invasion costs among origin and recipient regions

    No full text
    Globalization challenges sustainability by intensifying the ecological and economic impacts of biological invasions. These impacts may be unevenly distributed worldwide, with costs disproportionately incurred by a few regions. We identify economic cost distributions of invasions among origin and recipient countries and continents, and determine socio-economic and biodiversity-related predictors of cost dynamics. Using data filtered from the InvaCost database, which inevitably includes geographic biases in cost reporting, we found that recorded costly invasive alien species have originated from almost all regions, most frequently causing impacts to Europe. In terms of cost magnitude, reported monetary costs predominantly resulted from species with origins in Asia impacting North America. High reported cost linkages (flows) between species’ native countries and their invaded countries were related to proxies of shared environments and shared trade history. This pattern can be partly attributed to the legacy of colonial expansion and trade patterns. The characterization of ‘sender’ and ‘receiver’ regions of invasive alien species and their associated cost can contribute to more sustainable economies and societies while protecting biodiversity by informing biosecurity planning and the prioritization of control efforts across regions

    Antecedents of behavioural and reproductive dominance in pairs of the primitively eusocial wasp Ropalidia marginata

    No full text
    What factors predispose some individuals to become reproductively dominant in a group where every member can reproduce? Antecedents of reproductive dominance have often been investigated in primitively eusocial species where reproductive skew exists despite adult reproductive potential displayed by every group-member, but such studies have rarely focused on small, incipient colonies. Here, I investigated antecedents of behavioural and reproductive dominance in pairs of the Indian paper wasp Ropalidia marginata. Common antecedents of behavioural dominance such as body size and age were inoperative in pairs of R. marginata. Moreover, age and behavioural dominance, but not body size, influenced reproductive dominance in pairs. These findings are not only different from other primitively eusocial insects, but also different from the colonies of R. marginata. It is likely that antecedents of reproductive dominance are different not only in different species, but also change with group size within a species, such that the role of behavioural dominance to achieve reproductive monopoly remains more effective in small groups such as pairs, and becomes less effective as the group size increases. These results require further investigations into the effect of group size on individual behaviour in group-living animals

    Reproductive queue without overt conflict in the primitively eusocial wasp Ropalidia marginata

    No full text
    Colonies of the primitively eusocial wasp Ropalidia marginata consist of a single egg layer (queen) and a number of non-egg-laying workers. Although the queen is a docile individual, not at the top of the behavioral dominance hierarchy of the colony, she maintains complete reproductive monopoly. If the queen is lost or removed, one and only one of the workers potential queen (PQ)] becomes hyperaggressive and will become the next queen of the colony. The PQ is almost never challenged because she first becomes hyperaggressive and then gradually loses her aggression, develops her ovaries, and starts laying eggs. Although we are unable to identify the PQ when the queen is present, she appears to be a ``cryptic heir designate.'' Here, we show that there is not just one heir designate but a long reproductive queue and that PQs take over the role of egg-laying, successively, without overt conflict, as the queen or previous PQs are removed. The dominance rank of an individual is not a significant predictor of its position in the succession hierarchy. The age of an individual is a significant predictor, but it is not a perfect predictor because PQs often bypass older individuals to become successors. We suggest that such a predesignated reproductive queue that is implemented without overt conflict is adaptive in the tropics, where conspecific usurpers from outside the colony, which can take advantage of the anarchy prevailing in a queenless colony and invade it, are likely to be present throughout the year
    corecore