4 research outputs found

    Role and Important Properties of a Membrane with Its Recent Advancement in a Microbial Fuel Cell

    Get PDF
    Microbial fuel cells (MFC) are an emerging technology for wastewater treatment that utilizes the metabolism of microorganisms to generate electricity from the organic matter present in water directly. The principle of MFC is the same as hydrogen fuel cell and has three main components (i.e., anode, cathode, and proton exchange membrane). The membrane separates the anode and cathode chambers and keeps the anaerobic and aerobic conditions in the two chambers, respectively. This review paper describes the state-of-the-art membrane materials particularly suited for MFC and discusses the recent development to obtain robust, sustainable, and cost-effective membranes. Nafion 117, Flemion, and Hyflon are the typical commercially available membranes used in MFC. Use of nonfluorinated polymeric membrane materials such as sulfonated silicon dioxide (S-SiO2) in sulfonated polystyrene ethylene butylene polystyrene (SSEBS), sulfonated polyether ether ketone (SPEEK) and graphene oxide sulfonated polyether ether ketone (GO/SPEEK) membranes showed promising output and proved to be an alternative material to Nafion 117. There are many challenges to selecting a suitable membrane for a scaled-up MFC system so that the technology become technically and economically viable

    Effect of pH, COD, and HRT on the Performance of Microbial Fuel Cell Using Synthetic Dairy Wastewater

    Get PDF
    Microbial fuel cells (MFC) are emerging technologies that can produce electricity while treating wastewater. A series of tests were carried out to evaluate the efficiency of this technology for treating dairy wastewater (DWW). The experiments used Shewanella baltica as an exoelectrogen in a small single MFC to treat simulated DWW. The impacts of various operational factors, specifically pH, hydraulic retention time (HRT), and chemical oxygen demand (COD) in the influent to the anode chamber, were investigated, and the effect of these variables on the output performance of the cell was evaluated. The best performance of the MFC was found when the pH, HRT, and COD were 8, 6.66 h, and 20,632 mg/L, respectively, in the scaled experimental setup. Under these conditions, the maximum power density and percentage removal of COD in terms of wastewater treatment ability were found to be 138 mW/m2 and 71%, respectively. It may be concluded that MFCs are suitable treatment technologies for treating dairy wastewater while potentially simultaneously generating power

    Review on material and design of anode for microbial fuel cell

    Get PDF
    Microbial Fuel Cell (MFC) is a bio-electrochemical system that generates electricity by anaerobic oxidation of substrates. An anode is the most critical component because the primary conversion of wastewater into electrons and protons takes place on the surface of the anode, where a biofilm is formed. This paper describes the essential properties of the anode and classifies its types according to the material used to make it. Anode material is responsible for the flow of electrons generated by the microorganism; hence biocompatibility and conductivity can considered to be the two most important properties. In this paper, the various modification strategies to improve the performance of anodes of MFC are explained through the review of researchers’ published work in this field. The shape and size of the anode turned out to be very significant as the microbial growth depends on the available surface area. The attachment of biofilm on the surface of an anode largely depends on the interfacial surface chemistry. Methods for improving MFC performance by altering the anode material, architecture, biocompatibility, and longevity are discussed with a future perspective giving special importance to the cost
    corecore