29 research outputs found

    Dynamics of bat-coronavirus interactions: role of innate antiviral responses

    Get PDF
    Bats are speculated to be reservoirs of several emerging viruses including coronaviruses (CoVs) that cause severe acute respiratory syndrome (SARS), Middle-East respiratory syndrome (MERS), porcine epidemic diarrhea and swine acute diarrhea syndrome. These viruses cause significant disease in humans and agricultural animals. MERS-CoV causes serious disease in humans with a thirty-five percent mortality and has evolved proteins that can effectively suppress an innate antiviral response in human cells. Bats that are naturally or experimentally infected with these or similar viruses do not show apparent signs of disease and the molecular mechanisms of protection are not yet known. My doctoral thesis tested the hypothesis that big brown bat cells have unique adaptations in innate antiviral signaling pathways involved in the control of virus replication and coronavirus-induced inflammatory cytokines. To test this hypothesis, we generated the first commercially available North American bat (Eptesicus fuscus; big brown bat) kidney epithelial cell line. Using this cell line, we were able to demonstrate that big brown bat cells have evolved a unique repressor molecule, c-Rel that can effectively suppress double-stranded RNA (poly(I:C)) mediated expression of a key inflammatory cytokine, tumor necrosis factor alpha (TNF). MERS-CoV is thought to have evolved in insectivorous bats before spilling over to camels and eventually to humans. To further our understanding about bat-coronavirus interactions, we demonstrated that big brown bat cells are resistant to MERS-CoV-mediated subversion of antiviral responses. We determined that interferon regulatory factor 3 (IRF3) plays a critical role in controlling MERS-CoV propagation in big brown bat epithelial cells. Indeed, my doctoral thesis has identified two unique adaptations in big brown bat cells that might allow these bats, and probably other species of bats to successfully co-exist with coronaviruses. My thesis supports the hypothesis that bats function as global reservoirs for emerging coronaviruses by providing definitive examples of adaptations that would allow bats to co-exist with these viruses. Future work from my thesis will focus on adapting some of these antiviral strategies in human cells to control coronavirus-mediated disease in humans

    A Comparison of Whole Genome Sequencing of SARS-CoV-2 Using Amplicon-Based Sequencing, Random Hexamers, and Bait Capture

    Get PDF
    Genome sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is increasingly important to monitor the transmission and adaptive evolution of the virus. The accessibility of high-throughput methods and polymerase chain reaction (PCR) has facilitated a growing ecosystem of protocols. Two differing protocols are tiling multiplex PCR and bait capture enrichment. Each method has advantages and disadvantages but a direct comparison with different viral RNA concentrations has not been performed to assess the performance of these approaches. Here we compare Liverpool amplification, ARTIC amplification, and bait capture using clinical diagnostics samples. All libraries were sequenced using an Illumina MiniSeq with data analyzed using a standardized bioinformatics workflow (SARS-CoV-2 Illumina GeNome Assembly Line; SIGNAL). One sample showed poor SARS-CoV-2 genome coverage and consensus, reflective of low viral RNA concentration. In contrast, the second sample had a higher viral RNA concentration, which yielded good genome coverage and consensus. ARTIC amplification showed the highest depth of coverage results for both samples, suggesting this protocol is effective for low concentrations. Liverpool amplification provided a more even read coverage of the SARS-CoV-2 genome, but at a lower depth of coverage. Bait capture enrichment of SARS-CoV-2 cDNA provided results on par with amplification. While only two clinical samples were examined in this comparative analysis, both the Liverpool and ARTIC amplification methods showed differing efficacy for high and low concentration samples. In addition, amplification-free bait capture enriched sequencing of cDNA is a viable method for generating a SARS-CoV-2 genome sequence and for identification of amplification artifacts

    Predicting the recombination potential of severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged to cause widespread infections in humans. SARS-CoV-2 infections have been reported in the Kingdom of Saudi Arabia, where Middle East respiratory syndrome coronavirus (MERS-CoV) causes seasonal outbreaks with a case fatality rate of ~37 %. Here we show that there exists a theoretical possibility of future recombination events between SARS-CoV-2 and MERS-CoV RNA. Through computational analyses, we have identified homologous genomic regions within the ORF1ab and S genes that could facilitate recombination, and have analysed co-expression patterns of the cellular receptors for SARS-CoV-2 and MERS-CoV, ACE2 and DPP4, respectively, to identify human anatomical sites that could facilitate co-infection. Furthermore, we have investigated the likely susceptibility of various animal species to MERS-CoV and SARS-CoV-2 infection by comparing known virus spike protein–receptor interacting residues. In conclusion, we suggest that a recombination between SARS-CoV-2 and MERS-CoV RNA is possible and urge public health laboratories in high-risk areas to develop diagnostic capability for the detection of recombined coronaviruses in patient samples

    Strengthening a One Health approach to emerging zoonoses

    Get PDF
    Given the enormous global impact of the COVID-19 pandemic, outbreaks of highly pathogenic avian influenza in Canada, and manifold other zoonotic pathogen activity, there is a pressing need for a deeper understanding of the human-animal-environment interface and the intersecting biological, ecological, and societal factors contributing to the emergence, spread, and impact of zoonotic diseases. We aim to apply a One Health approach to pressing issues related to emerging zoonoses, and propose a functional framework of interconnected but distinct groups of recommendations around strategy and governance, technical leadership (operations), equity, education and research for a One Health approach and Action Plan for Canada. Change is desperately needed, beginning by reorienting our approach to health and recalibrating our perspectives to restore balance with the natural world in a rapid and sustainable fashion. In Canada, a major paradigm shift in how we think about health is required. All of society must recognize the intrinsic value of all living species and the importance of the health of humans, other animals, and ecosystems to health for all

    Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue

    Get PDF
    In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)emerged, causing the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV, the agent responsible for the 2003 SARS outbreak, utilises angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) host molecules for viral entry. ACE2 and TMPRSS2 have recently been implicated in SARS-CoV-2 viral infection. Additional host molecules including ADAM17, cathepsin L, CD147 and GRP78 may also function as receptors for SARS-CoV-2.To determine the expression and in situ localisation of candidate SARS-CoV-2 receptors in the respiratory mucosa, we analysed gene expression datasets from airway epithelial cells of 515 healthy subjects, gene promoter activity analysis using the FANTOM5 dataset containing 120 distinct sample types, single cell RNA sequencing (scRNAseq) of 10 healthy subjects, proteomic datasets, immunoblots on multiple airway epithelial cell types, and immunohistochemistry on 98 human lung samples.We demonstrate absent to lowACE2promoter activity in a variety of lung epithelial cell samples andlowACE2gene expression in both microarray and scRNAseq datasets of epithelial cell populations.Consistent with gene expression, rare ACE2 protein expression was observed in the airway epithelium and alveoli of human lung, confirmed with proteomics. We present confirmatory evidence for the presence ofTMPRSS2, CD147 and GRP78 protein in vitro in airway epithelial cells and confirm broad in situ protein expression of CD147 and GRP78 in the respiratory mucosa. Collectively, our data suggest the presence of a mechanism dynamically regulating ACE2 expression inhuman lung, perhaps in periods of SARS-CoV-2 infection, and also suggest that alternative receptors forSARS-CoV-2 exist to facilitate initial host cell infection

    Clash of the titans: interferons and SARS-CoV-2

    No full text
    International audienceInterferons are our first line of defense against invading viruses. However, viruses encode effector proteins that can modulate human interferon responses. In this forum article, we highlight important discoveries and discuss outstanding questions that will enable us to better understand the nuances of this evolutionary battle between interferons and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

    Interferon Regulatory Factor 3-Mediated Signaling Limits Middle-East Respiratory Syndrome (MERS) Coronavirus Propagation in Cells from an Insectivorous Bat

    No full text
    Insectivorous bats are speculated to be ancestral hosts of Middle-East respiratory syndrome (MERS) coronavirus (CoV). MERS-CoV causes disease in humans with thirty-five percent fatality, and has evolved proteins that counteract human antiviral responses. Since bats experimentally infected with MERS-CoV do not develop signs of disease, we tested the hypothesis that MERS-CoV would replicate less efficiently in bat cells than in human cells because of its inability to subvert antiviral responses in bat cells. We infected human and bat (Eptesicus fuscus) cells with MERS-CoV and observed that the virus grew to higher titers in human cells. MERS-CoV also effectively suppressed the antiviral interferon beta (IFNβ) response in human cells, unlike in bat cells. To determine if IRF3, a critical mediator of the interferon response, also regulated the response in bats, we examined the response of IRF3 to poly(I:C), a synthetic analogue of viral double-stranded RNA. We observed that bat IRF3 responded to poly(I:C) by nuclear translocation and post-translational modifications, hallmarks of IRF3 activation. Suppression of IRF3 by small-interfering RNA (siRNA) demonstrated that IRF3 was critical for poly(I:C) and MERS-CoV induced induction of IFNβ in bat cells. Our study demonstrates that innate antiviral signaling in E. fuscus bat cells is resistant to MERS-CoV-mediated subversion
    corecore