24 research outputs found
Selectively Modified Lactose and N-Acetyllactosamine Analogs at Three Key Positions to Afford Effective Galectin-3 Ligands †
Galectins constitute a family of galactose-binding lectins overly expressed in the tumor microenvironment as well as in innate and adaptive immune cells, in inflammatory diseases. Lactose ((β-D-galactopyranosyl)-(1→4)-β-D-glucopyranose, Lac) and N-Acetyllactosamine (2-acetamido-2-deoxy-4-O-β-D-galactopyranosyl-D-glucopyranose, LacNAc) have been widely exploited as ligands for a wide range of galectins, sometimes with modest selectivity. Even though several chemical modifications at single positions of the sugar rings have been applied to these ligands, very few examples combined the simultaneous modifications at key positions known to increase both affinity and selectivity. We report herein combined modifications at the anomeric position, C-2, and O-3′ of each of the two sugars, resulting in a 3′-O-sulfated LacNAc analog having a Kd of 14.7 µM against human Gal-3 as measured by isothermal titration calorimetry (ITC). This represents a six-fold increase in affinity when compared to methyl β-D-lactoside having a Kd of 91 µM. The three best compounds contained sulfate groups at the O-3′ position of the galactoside moieties, which were perfectly in line with the observed highly cationic character of the human Gal-3 binding site shown by the co-crystal of one of the best candidates of the LacNAc series
Revealing the Identity of Human Galectin-3 as a Glycosaminoglycan-Binding Protein
Human galectin-3 (Gal-3) is a β-galactoside-binding lectin. This multitasking protein preferentially interacts with N-acetyllactosamine moieties on glycoconjugates. Specific hydroxyl groups (4-OH, 6-OH of galactose, and 3-OH of glucose/N-acetylglucosamine) of lactose/LacNAc are essential for their binding to Gal-3. Through hemagglutination inhibition, microcalorimetry, and spectroscopy, we have shown that despite being a lectin, Gal-3 possesses the characteristics of a glycosaminoglycan (GAG)-binding protein (GAGBP). Gal-3 interacts with sulfated GAGs [heparin, chondroitin sulfate-A (CSA), -B (CSB), and -C (CSC)] and chondroitin sulfate proteoglycans (CSPGs). Heparin, CSA, and CSC showed micromolar affinity for Gal-3, while the affinity of CSPGs for Gal-3 was much higher (nanomolar). Interestingly, CSA, CSC, and a bovine CSPG, not heparin and CSB, were multivalent ligands for Gal-3, and they formed reversible noncovalent cross-linked complexes with the lectin. Binding of sulfated GAGs to Gal-3 was completely inhibited when Gal-3 was preincubated with β-lactose. Cross-linking of Gal-3 by CSA, CSC, and the bovine CSPG was also reversed by β-lactose. These findings strongly suggest that GAGs primarily occupy the lactose/LacNAc binding site of Gal-3. Identification of Gal-3 as a GAGBP should help to reveal new functions of Gal-3 mediated by GAGs and proteoglycans. The GAG- and CSPG-binding properties of Gal-3 make the lectin a potential competitor/collaborator of other GAGBPs such as growth factors, cytokines, morphogens, and extracellular matrix proteins
Detection and purification of lectins and glycoproteins by a non-column chromatographic technique
Proteins including glycoproteins and lectins play important roles in many biological processes. Therefore, they are vigorously studied in academic, clinical and industrial research. Such research activities often need these proteins in their purest forms. Thus, protein purification constitutes an important step in many scientific projects. Conventional protein purification techniques include affinity chromatography, ion-exchange chromatography and size-exclusion chromatography, and electrophoresis. These techniques have their own limitations. Conventional approaches are generally tedious, multi-step, expensive and time consuming. They generally require elaborate infrastructure and larger starting crude materials. In addition, these techniques sometimes encounter non-specific binding. In order to overcome some of the limitations associated with these conventional methods, our lab developed a protein detection/purification method named “Capture and Release” (CaRe). In this method, a target capturing agent (TCA) captures a specific target (lectin or glycoprotein) in the crude solution and form insoluble complex. The complex is spun down while the other unwanted proteins are washed off. Captured target is released from the TCA by the addition of competitive monovalent ligand, separated by membrane filtration and visualized by gel electrophoresis. We were successful in purifying recombinant human Galectin-3 by CaRe. This method was able to purify glycoproteins as well. CaRe was validated by purifying known lectins and glycoproteins. Compare to conventional techniques, our method is relatively fast, simple, precise and less expensive and it can detect/purify lectins and glycoproteins even from a small volume (~1 ml) of starting material. Thus CaRe can serve as a valuable tool to discover unknown proteins and glycoproteins
Implication of the VirD4 coupling protein of the Lvh type 4 secretion system in virulence phenotypes of Legionella pneumophila
The genome of the Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires\u27 disease, encodes two virulence-associated type 4 secretion systems (T4SSs), the Dot/Icm type 4B (T4BSS) and the Lvh type 4A (T4ASS). Broth stationary-phase cultures of most dot/icm mutants are defective in entry and evasion of phagosome acidification. However, those virulence defects can be reversed by incubating broth cultures of dot/icm mutants in water, termed water stress (WS). WS reversal requires the lvh T4ASS locus, suggesting an interaction between the two T4SSs in producing Legionella virulence phenotypes. In the current work, the loss of WS reversal in a dotA Δlvh mutant of strain JR32 was shown to be attributable to loss of the lvh virD4 gene, encoding the putative coupling protein of the T4ASS. Transformation of a dotA Δlvh mutant with virD4 also reversed entry and phagosome acidification defects in broth cultures. In addition, broth cultures of Δlvh andΔvirD4 mutants, which were dot/icm+,showed 5-fold and \u3e 6-fold increases in translocation of the Dot/Icm translocation substrates, proteins RalF and SidD, respectively. These data demonstrate that the Lvh T4ASS functions in both broth stationary-phase cultures conventionally used for infection and cultures exposed to WS treatment. Our studies in a dotA Δlvh mutant and in a dot/icm+ background establish that VirD4 and the Lvh T4ASS contribute to virulence phenotypes and are consistent with independent functioning of Dot/Icm and Lvh T4SSs or functional substitution of the Lvh VirD4 protein for a component(s) of the Dot/Icm T4BSS. © 2013, American Society for Microbiology
Environmental Mimics and the Lvh Type IVA Secretion System Contribute to Virulence-Related Phenotypes of Legionella pneumophila
Legionella pneumophila, the causative organism of Legionnaires' disease, is a fresh-water bacterium and intracellular parasite of amoebae. This study examined the effects of incubation in water and amoeba encystment on L. pneumophila strain JR32 and null mutants in dot/icm genes encoding a type IVB secretion system required for entry, delayed acidification of L. pneumophila-containing phagosomes, and intracellular multiplication when stationary-phase bacteria infect amoebae and macrophages. Following incubation of stationary-phase cultures in water, mutants in dotA and dotB, essential for function of the type IVB secretion system, exhibited entry and delay of phagosome acidification comparable to that of strain JR32. Following encystment in Acanthamoeba castellanii and reversion of cysts to amoeba trophozoites, dotA and dotB mutants exhibited intracellular multiplication in amoebae. The L. pneumophila Lvh locus, encoding a type IVA secretion system homologous to that in Agrobacterium tumefaciens, was required for restoration of entry and intracellular multiplication in dot/icm mutants following incubation in water and amoeba encystment and was required for delay of phagosome acidification in strain JR32. These data support a model in which the Dot/Icm type IVB secretion system is conditionally rather than absolutely required for L. pneumophila virulence-related phenotypes. The data suggest that the Lvh type IVA secretion system, previously thought to be dispensable, is involved in virulence-related phenotypes under conditions mimicking the spread of Legionnaires' disease from environmental niches. Since environmental amoebae are implicated as reservoirs for an increasing number of environmental pathogens and for drug-resistant bacteria, the environmental mimics developed here may be useful in virulence studies of other pathogens
Mechanism of multivalent glycoconjugate-lectin interaction: An update
Lectins are predominantly oligomeric proteins with several binding sites per molecule. Glycoconjugates are their natural ligands, which often possess multiple binding epitopes. Thus, lectin-glycoconjugate interactions are mostly multivalent in nature. The mechanism of multivalent binding is fundamentally different from those described for monovalent interactions in textbooks and research papers. Over the years, binding studies that make use of different lectins and a variety of multivalent glycoconjugate ligands were conducted in order to understand the underlying principles of multivalency. Starting with seemingly simple synthetic multivalent analogs, systematic studies were carried out using natural glycoconjugate ligands with increasing valency and complexity. Those ligands included multivalent glycoproteins, polyvalent polysaccharides, including glycosaminoglycans, as well as supra-valent mucins and proteoglycans. Models and mechanisms of multivalent binding derived from quantitative data are summarized in the present updated review