27 research outputs found

    Epilepsy in kcnj10 Morphant Zebrafish Assessed with a Novel Method for Long-Term EEG Recordings.

    Get PDF
    We aimed to develop and validate a reliable method for stable long-term recordings of EEG activity in zebrafish, which is less prone to artifacts than current invasive techniques. EEG activity was recorded with a blunt electrolyte-filled glass pipette placed on the zebrafish head mimicking surface EEG technology in man. In addition, paralysis of agarose-embedded fish using D-tubocurarine excluded movement artifacts associated with epileptic activity. This non-invasive recording technique allowed recordings for up to one hour and produced less artifacts than impaling the zebrafish optic tectum with a patch pipette. Paralyzed fish survived, and normal heartbeat could be monitored for over 1h. Our technique allowed the demonstration of specific epileptic activity in kcnj10a morphant fish (a model for EAST syndrome) closely resembling epileptic activity induced by pentylenetetrazol. This new method documented that seizures in the zebrafish EAST model were ameliorated by pentobarbitone, but not diazepam, validating its usefulness. In conclusion, non-invasive recordings in paralyzed EAST syndrome zebrafish proved stable, reliable and robust, showing qualitatively similar frequency spectra to those obtained from pentylenetetrazol-treated fish. This technique may prove particularly useful in zebrafish epilepsy models that show infrequent or conditional seizure activity

    Secondary hypertension due to primary hyperaldosteronism

    No full text

    Cellular Pathophysiology of an Adrenal Adenoma-Associated Mutant of the Plasma Membrane Ca2+-ATPase ATP2B3

    No full text
    Adrenal aldosterone-producing adenomas (APAs) are a main cause for primary aldosteronism leading to arterial hypertension. Physiologically, aldosterone production in the adrenal gland is stimulated by angiotensin II and high extracellular potassium. These stimuli lead to a depolarization of the plasma membrane and, as a consequence, an increase of intracellular Ca2+. Mutations of the plasma membrane Ca2+-ATPase ATP2B3 have been found in APAs with a prevalence of 0.6%-3.1%. Here, we investigated the effects of the APA-associated ATP2B3(Leu425_Val426del) mutation in adrenocortical NCI-H295R and human embryonic kidney (HEK-293) cells. Ca2+ measurements revealed a higher basal Ca2+ level in cells expressing the mutant ATP2B3. This rise in intracellular Ca2+ was even more pronounced under conditions with high extracellular Ca2+ pointing to an increased Ca2+ influx associated with the mutated protein. Furthermore, cells with the mutant ATP2B3 appeared to have a reduced capacity to export Ca2+ suggesting a loss of the physiological pump function. Surprisingly, expression of the mutant ATP2B3 caused a Na+-dependent inward current that strongly depolarized the plasma membrane and compromised the cytosolic cation composition. In parallel to these findings, mRNA expression of the cytochrome P450, family 11, subfamily B, polypeptide 2 (aldosterone synthase) was substantially increased and aldosterone production was enhanced in cells overexpressing mutant ATP2B3. In summary, the APA-associated ATP2B3(Leu425_Val426del) mutant promotes aldosterone production by at least 2 different mechanisms: 1) a reduced Ca2+ export due to the loss of the physiological pump function; and 2) an increased Ca2+ influx due to opening of depolarization-activated Ca2+ channels as well as a possible Ca2+ leak through the mutated pump

    A novel KCNJ5-insT149 somatic mutation close to, but outside, the selectivity filter causes resistant hypertension by loss of selectivity for potassium

    No full text
    Context: Understanding the function of the KCNJ5 potassium channel through characterization of naturally occurring novel mutations is key for dissecting the mechanism(s) of autonomous aldosterone secretion in primary aldosteronism. Objective: We sought for such novel KCNJ5 channel mutations in a large database of patients with aldosterone-producing adenomas (APAs). Methods: We discovered a novel somatic c.446insAAC insertion, resulting in the mutant protein KCNJ5-insT149, in a patient with severe drug-resistant hypertension among 195 consecutive patients with a conclusive diagnosis of APA, 24.6% of whom showed somatic KCNJ5 mutations. By site-directed mutagenesis, we created the mutated cDNA that was transfected, along with KCNJ3 cDNA, in mammalian cells. We also localized CYP11B2 in the excised adrenal gland with immunohistochemistry and immunofluorescence using an antibody specific to human CYP11B2. Whole-cell patch clamp recordings, CYP11B2 mRNA, aldosterone measurement, and molecular modeling were performed to characterize the novel KCNJ5-insT149 mutation. Results: Compared with wild-type and mock-transfected adrenocortical cells, HAC15 cells expressing the mutant KCNJ5 showed increased CYP11B2 expression and aldosterone secretion. Human embryonic kidney-293 cells expressing the mutated KCNJ5-insT149 channel exhibited a strong Na(+) inward current and, in parallel, a substantial rise in intracellular Ca(2+), caused by activation of voltage-gated Ca(2+) channels and reduced Ca(2+) elimination by Na(+)/Ca(2+) exchangers. Conclusions: This novel mutation shows pathological Na(+) permeability, membrane depolarization, raised cytosolic Ca(2+), and increased aldosterone synthesis. Hence, a novel KCNJ5 channelopathy located after the pore {alpha}-helix preceding the selectivity filter causes constitutive secretion of aldosterone with ensuing resistant hypertension in a patient with a small APA
    corecore