452 research outputs found

    Assessing Aggregate Comovements in France, Germany and Italy. Using a Non Stationary Factor Model of the Euro Area.

    Get PDF
    The objective of the paper is to investigate to what extent business cycles co-move in Germany, France and Italy. We use a large-scale database of non-stationary series for the euro area in order to assess the effect of common versus idiosyncratic shocks, as well as transitory versus permanent shocks, across countries over the 1980:Q1 to 2003:Q4 period. We apply the method-ology proposed by Bai (2004) and Bai and Ng (2004) to construct a coincident indicator of the euro area business cycle to which national developments appear to be increasingly correlated at business cycle frequencies (8 to 32 quarters), while more significant différences appear at lower frequencies which measures potential growth. The indicator is also shown to be related to extra euro area economic developments.Factor models ; Non-stationary panel data models ; Euro area business cycles.

    Boundaries of Disk-like Self-affine Tiles

    Full text link
    Let T:=T(A,D)T:= T(A, {\mathcal D}) be a disk-like self-affine tile generated by an integral expanding matrix AA and a consecutive collinear digit set D{\mathcal D}, and let f(x)=x2+px+qf(x)=x^{2}+px+q be the characteristic polynomial of AA. In the paper, we identify the boundary T\partial T with a sofic system by constructing a neighbor graph and derive equivalent conditions for the pair (A,D)(A,{\mathcal D}) to be a number system. Moreover, by using the graph-directed construction and a device of pseudo-norm ω\omega, we find the generalized Hausdorff dimension dimHω(T)=2logρ(M)/logq\dim_H^{\omega} (\partial T)=2\log \rho(M)/\log |q| where ρ(M)\rho(M) is the spectral radius of certain contact matrix MM. Especially, when AA is a similarity, we obtain the standard Hausdorff dimension dimH(T)=2logρ/logq\dim_H (\partial T)=2\log \rho/\log |q| where ρ\rho is the largest positive zero of the cubic polynomial x3(p1)x2(qp)xqx^{3}-(|p|-1)x^{2}-(|q|-|p|)x-|q|, which is simpler than the known result.Comment: 26 pages, 11 figure

    Complex transitions to synchronization in delay-coupled networks of logistic maps

    Full text link
    A network of delay-coupled logistic maps exhibits two different synchronization regimes, depending on the distribution of the coupling delay times. When the delays are homogeneous throughout the network, the network synchronizes to a time-dependent state [Atay et al., Phys. Rev. Lett. 92, 144101 (2004)], which may be periodic or chaotic depending on the delay; when the delays are sufficiently heterogeneous, the synchronization proceeds to a steady-state, which is unstable for the uncoupled map [Masoller and Marti, Phys. Rev. Lett. 94, 134102 (2005)]. Here we characterize the transition from time-dependent to steady-state synchronization as the width of the delay distribution increases. We also compare the two transitions to synchronization as the coupling strength increases. We use transition probabilities calculated via symbolic analysis and ordinal patterns. We find that, as the coupling strength increases, before the onset of steady-state synchronization the network splits into two clusters which are in anti-phase relation with each other. On the other hand, with increasing delay heterogeneity, no cluster formation is seen at the onset of steady-state synchronization; however, a rather complex unsynchronized state is detected, revealed by a diversity of transition probabilities in the network nodes

    On the "Mandelbrot set" for a pair of linear maps and complex Bernoulli convolutions

    Full text link
    We consider the "Mandelbrot set" MM for pairs of complex linear maps, introduced by Barnsley and Harrington in 1985 and studied by Bousch, Bandt and others. It is defined as the set of parameters λ\lambda in the unit disk such that the attractor AλA_\lambda of the IFS {λz1,λz+1}\{\lambda z-1, \lambda z+1\} is connected. We show that a non-trivial portion of MM near the imaginary axis is contained in the closure of its interior (it is conjectured that all non-real points of MM are in the closure of the set of interior points of MM). Next we turn to the attractors AλA_\lambda themselves and to natural measures νλ\nu_\lambda supported on them. These measures are the complex analogs of much-studied infinite Bernoulli convolutions. Extending the results of Erd\"os and Garsia, we demonstrate how certain classes of complex algebraic integers give rise to singular and absolutely continuous measures νλ\nu_\lambda. Next we investigate the Hausdorff dimension and measure of AλA_\lambda, for λ\lambda in the set MM, for Lebesgue-a.e. λ\lambda. We also obtain partial results on the absolute continuity of νλ\nu_\lambda for a.e. λ\lambda of modulus greater than 1/2\sqrt{1/2}.Comment: 22 pages, 5 figure

    Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-states sequences

    Get PDF
    In this paper, we propose to mix the approach underlying Bandt-Pompe permutation entropy with Lempel-Ziv complexity, to design what we call Lempel-Ziv permutation complexity. The principle consists of two steps: (i) transformation of a continuous-state series that is intrinsically multivariate or arises from embedding into a sequence of permutation vectors, where the components are the positions of the components of the initial vector when re-arranged; (ii) performing the Lempel-Ziv complexity for this series of `symbols', as part of a discrete finite-size alphabet. On the one hand, the permutation entropy of Bandt-Pompe aims at the study of the entropy of such a sequence; i.e., the entropy of patterns in a sequence (e.g., local increases or decreases). On the other hand, the Lempel-Ziv complexity of a discrete-state sequence aims at the study of the temporal organization of the symbols (i.e., the rate of compressibility of the sequence). Thus, the Lempel-Ziv permutation complexity aims to take advantage of both of these methods. The potential from such a combined approach - of a permutation procedure and a complexity analysis - is evaluated through the illustration of some simulated data and some real data. In both cases, we compare the individual approaches and the combined approach.Comment: 30 pages, 4 figure

    A recursive approach to the O(n) model on random maps via nested loops

    Full text link
    We consider the O(n) loop model on tetravalent maps and show how to rephrase it into a model of bipartite maps without loops. This follows from a combinatorial decomposition that consists in cutting the O(n) model configurations along their loops so that each elementary piece is a map that may have arbitrary even face degrees. In the induced statistics, these maps are drawn according to a Boltzmann distribution whose parameters (the face weights) are determined by a fixed point condition. In particular, we show that the dense and dilute critical points of the O(n) model correspond to bipartite maps with large faces (i.e. whose degree distribution has a fat tail). The re-expression of the fixed point condition in terms of linear integral equations allows us to explore the phase diagram of the model. In particular, we determine this phase diagram exactly for the simplest version of the model where the loops are "rigid". Several generalizations of the model are discussed.Comment: 47 pages, 13 figures, final version (minor changes with v2 after proof corrections

    Break in the Mean and Persistence of Inflation: A Sectoral Analysis of French CPI

    Full text link
    This paper uses disaggregated CPI time series to show that a break in the mean of French inflation occurred in the mid-eighties and that the 1983 monetary policy shift mostly accounted for it. CPI average yearly growth declined from nearly 11% before the break date (May 1985) to 2.1% after. No other break in the 1973-2004 sample period can be found. Controlling for this mean break, both aggregate and sectoral inflation persistence are stable and low, with the unit root lying far in the tail of the persistence estimates. However, persistence differs dramatically across sectors. Finally, the duration between two price changes (at the firm level) appears positively related with inflation persistence (at the aggregate level)

    The Spatial Dimension of US House Price Developments

    Full text link
    Spatial heterogeneity and spatial dependence are two well established aspects of house price developments. However, the analysis of differences in spatial dependence across time and space has not gained much attention yet. In this paper we jointly analyze these three aspects of spatial data. We apply a panel smooth transition regression model that allows for heterogeneity across time and space in spatial house price spillovers and for heterogeneity in the effect of the fundamentals on house price dynamics. We find evidence for heterogeneity in spatial spillovers of house price developments across space and time: house price developments in neighboring regions spill over stronger in times of increasing neighboring house prices compared to declining neighboring house prices. This is interpreted as evidence for the disposition effect. Moreover, heterogeneity in the effect of the fundamentals on house price dynamics could not be detected for all variables; real per capita disposable income and the unemployment rate have a homogeneous effect across time and space

    Complexity of multi-dimensional spontaneous EEG decreases during propofol induced general anaesthesia

    Get PDF
    Emerging neural theories of consciousness suggest a correlation between a specific type of neural dynamical complexity and the level of consciousness: When awake and aware, causal interactions between brain regions are both integrated (all regions are to a certain extent connected) and differentiated (there is inhomogeneity and variety in the interactions). In support of this, recent work by Casali et al (2013) has shown that Lempel-Ziv complexity correlates strongly with conscious level, when computed on the EEG response to transcranial magnetic stimulation. Here we investigated complexity of spontaneous high-density EEG data during propofol-induced general anaesthesia. We consider three distinct measures: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability in the constitution of the set of active channels; and (iii) the novel synchrony coalition entropy (SCE), which measures the variability in the constitution of the set of synchronous channels. After some simulations on Kuramoto oscillator models which demonstrate that these measures capture distinct ‘flavours’ of complexity, we show that there is a robustly measurable decrease in the complexity of spontaneous EEG during general anaesthesia
    corecore