38 research outputs found

    Superoxide reductase from Giardia intestinalis: structural characterization of the first sor from a eukaryotic organism shows an iron centre that is highly sensitive to photoreduction

    Get PDF
    Superoxide reductase (SOR), which is commonly found in prokaryotic organisms, affords protection from oxidative stress by reducing the superoxide anion to hydrogen peroxide. The reaction is catalyzed at the iron centre, which is highly conserved among the prokaryotic SORs structurally characterized to date. Reported here is the first structure of an SOR from a eukaryotic organism, the protozoan parasite Giardia intestinalis (GiSOR), which was solved at 2.0 Å resolution. By collecting several diffraction data sets at 100 K from the same flash-cooled protein crystal using synchrotron X-ray radiation, photoreduction of the iron centre was observed. Reduction was monitored using an online UV-visible microspectrophotometer, following the decay of the 647 nm absorption band characteristic of the iron site in the glutamate-bound, oxidized state. Similarly to other 1Fe-SORs structurally characterized to date, the enzyme displays a tetrameric quaternary-structure arrangement. As a distinctive feature, the N-terminal loop of the protein, containing the characteristic EKHxP motif, revealed an unusually high flexibility regardless of the iron redox state. At variance with previous evidence collected by X-ray crystallography and Fourier transform infrared spectroscopy of prokaryotic SORs, iron reduction did not lead to dissociation of glutamate from the catalytic metal or other structural changes; however, the glutamate ligand underwent X-ray-induced chemical changes, revealing high sensitivity of the GiSOR active site to X-ray radiation damage

    BLD10/CEP135 Is a Microtubule-Associated Protein that Controls the Formation of the Flagellum Central Microtubule Pair

    Get PDF
    The deposited article is a post-print version and has been submitted to peer review.The deposited article is a pre-print versionThis deposit is composed by the main article and the supplementary materials are present in the publisher's page in the following link: https://ars.els-cdn.com/content/image/1-s2.0-S1534580712002511-mmc1.pdfCilia and flagella are involved in a variety of processes and human diseases, including ciliopathies and sterility. Their motility is often controlled by a central microtubule (MT) pair localized within the ciliary MT-based skeleton, the axoneme. We characterized the formation of the motility apparatus in detail in Drosophila spermatogenesis. We show that assembly of the central MT pair starts prior to the meiotic divisions, with nucleation of a singlet MT within the basal body of a small cilium, and that the second MT of the pair only assembles much later, upon flagella formation. BLD10/CEP135, a conserved player in centriole and flagella biogenesis, can bind and stabilize MTs and is required for the early steps of central MT pair formation. This work describes a genetically tractable system to study motile cilia formation and provides an explanation for BLD10/CEP135's role in assembling highly stable MT-based structures, such as motile axonemes and centrioles.Fundação para a Ciência e Tecnologia grants: (PTDC/BIA-BCM/105602/2008); EMBO Installation Grant; Instituto Gulbenkian de Ciência; EMBO YIP Program; European Research Council grant: ([FP7/2010]/ERC Grant “261344-CentrioleStructNumber.”); Ciência 2007; EMBO, Marie Curie Actions.info:eu-repo/semantics/publishedVersio

    Structural and biophysical insights into the mode of covalent binding of rationally designed potent BMX inhibitors.

    Get PDF
    The bone marrow tyrosine kinase in chromosome X (BMX) is pursued as a drug target because of its role in various pathophysiological processes. We designed BMX covalent inhibitors with single-digit nanomolar potency with unexploited topological pharmacophore patterns. Importantly, we reveal the first X-ray crystal structure of covalently inhibited BMX at Cys496, which displays key interactions with Lys445, responsible for hampering ATP catalysis and the DFG-out-like motif, typical of an inactive conformation. Molecular dynamic simulations also showed this interaction for two ligand/BMX complexes. Kinome selectivity profiling showed that the most potent compound is the strongest binder, displays intracellular target engagement in BMX-transfected cells with two-digit nanomolar inhibitory potency, and leads to BMX degradation PC3 in cells. The new inhibitors displayed anti-proliferative effects in androgen-receptor positive prostate cancer cells that where further increased when combined with known inhibitors of related signaling pathways, such as PI3K, AKT and Androgen Receptor. We expect these findings to guide development of new selective BMX therapeutic approaches

    New Insights into Type II NAD(P)H:Quinone Oxidoreductases

    No full text
    Type II NAD(P)H:quinone oxidoreductases (NDH-2) catalyze the two-electron transfer from NAD(P)H to quinones, without any energy-transducing site. NDH-2 accomplish the turnover of NAD(P)H, regenerating the NAD(P)(+) pool, and may contribute to the generation of a membrane potential through complexes III and IV. These enzymes are usually constituted by a nontransmembrane polypeptide chain of ∼50 kDa, containing a flavin moiety. There are a few compounds that can prevent their activity, but so far no general specific inhibitor has been assigned to these enzymes. However, they have the common feature of being resistant to the complex I classical inhibitors rotenone, capsaicin, and piericidin A. NDH-2 have particular relevance in yeasts like Saccharomyces cerevisiae and in several prokaryotes, whose respiratory chains are devoid of complex I, in which NDH-2 keep the [NADH]/[NAD(+)] balance and are the main entry point of electrons into the respiratory chains. Our knowledge of these proteins has expanded in the past decade, as a result of contributions at the biochemical level and the sequencing of the genomes from several organisms. The latter showed that most organisms contain genes that potentially encode NDH-2. An overview of this development is presented, with special emphasis on microbial enzymes and on the identification of three subfamilies of NDH-2

    The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors

    Get PDF
    Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10–12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models.This work was supported by Fundação para a Ciência e Tecnologia (Portugal) grants PTDC/BBB-BEP/1724/2012 to PM and TB, and PEst-OE/EQB/LA0004/2011 to PM; Creative Research Initiatives Program (Research Center for Chromatin Dynamics, 2009-0081563) to SB; Ministry of Economy and Competitiveness of the Spanish Government grants SAF2011-22988 and SAF2014-52301-R to OL; NIH grants R01 GM084465 and CA166054 to AD; The Canadian Institutes of Health Research grant (MOP-93778) to WAH; Equipe Labélisée Ligue Contre le Cancer and Institut National du Cancer grant PLBIO10-155 to JR.Peer reviewedPeer Reviewe

    Acidianus ambivalens type-II NADH dehydrogenase: genetic characterisation and identification of the flavin moiety as FMN.

    No full text
    The thermoacidophilic archaeon Acidianus ambivalens contains a monomeric 47 kDa type-II NADH dehydrogenase (NDH), which contains a covalently bound flavin. In this work, by a combination of several methods, namely (31)P-nuclear magnetic resonance and fluorescence spectroscopies, it is proven that this enzyme contains covalent FMN, a novelty among this family of enzymes, which were so far thought to mainly have the flavin dinucleotide form. Discrimination between several possible covalent flavin linkages was achieved by spectral and fluorescence experiments, which identified an 8alpha-N(1)-histidylflavin-type of linkage. Analysis of the gene-deduced amino acid sequence of type-II NDH showed no transmembranar helices and allowed the definition of putative dinucleotide and quinone binding motifs. Further, it is suggested that membrane anchoring can be achieved via amphipatic helices

    Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea.

    No full text
    The oxidation and reduction of elemental sulfur and reduced inorganic sulfur species are some of the most important energy-yielding reactions for microorganisms living in volcanic hot springs, solfataras, and submarine hydrothermal vents, including both heterotrophic, mixotrophic, and chemolithoautotrophic, carbon dioxide-fixing species. Elemental sulfur is the electron donor in aerobic archaea like Acidianus and Sulfolobus. It is oxidized via sulfite and thiosulfate in a pathway involving both soluble and membrane-bound enzymes. This pathway was recently found to be coupled to the aerobic respiratory chain, eliciting a link between sulfur oxidation and oxygen reduction at the level of the respiratory heme copper oxidase. In contrast, elemental sulfur is the electron acceptor in a short electron transport chain consisting of a membrane-bound hydrogenase and a sulfur reductase in (facultatively) anaerobic chemolithotrophic archaea Acidianus and Pyrodictium species. It is also the electron acceptor in organoheterotrophic anaerobic species like Pyrococcus and Thermococcus, however, an electron transport chain has not been described as yet. The current knowledge on the composition and properties of the aerobic and anaerobic pathways of dissimilatory elemental sulfur metabolism in thermophilic archaea is summarized in this contribution

    SAD phasing towards structure determination of a thermostable Rieske ferredoxin with a novel stabilizing disulfide bridge.

    No full text
    Rieske proteins and Rieske ferredoxins are ubiquitous electron-transfer metalloproteins that are characterized by a [2Fe-2S] cluster coordinated by pairs of cysteine and histidine residues. The thermoacidophilic archaeon Acidianus ambivalens contains a Rieske ferredoxin termed RFd2, which has an hitherto unknown additional region of 40-44 residues at the C-terminus with a Cx3C motif that introduces a novel disulfide bond within the Rieske fold. RFd2 was crystallized with the aim of determining its three-dimensional structure in order to understand the contribution of this as yet unique disulfide bridge to the function and stability of RFd2. RFd2 crystals were successively improved, increasing their diffraction to 1.9 Å resolution. Molecular replacement did not solve the RFd2 structure, but a highly multiple in-house diffraction data set collected at the Cu Kα edge led to solution of the phase problem
    corecore