148 research outputs found

    La prise en charge d’un goitre compressif chez une femme enceinte

    Get PDF
    Introduction: Les mĂ©decins d'urgence reçoivent frĂ©quemment des patients atteints d'une pathologie de la thyroĂŻde. Cependant, il est rare que ces troubles mettent la vie du patient en danger. La compression des voies aĂ©riennes supĂ©rieures due Ă  une augmentation du volume d'une tumeur bĂ©nigne de la thyroĂŻde et peut nĂ©cessiter un traitement chirurgical urgent.But: rappeler les modalitĂ©s de prise en charge d'un goitre chez une femme enceinte.Observation: nous rapportons un cas d'une femme enceinte qui a Ă©tĂ© admise pour un goitre compressif avec dyspnĂ©e laryngĂ©e, qui exigeait une thyroĂŻdectomie totale en urgence.Conclusion: La thyroĂŻdectomie urgente chez la femme enceinte peut ĂȘtre rĂ©alisĂ©e si on respecte les prĂ©cautions nĂ©cessaires.Mots clĂ©s: goitre, grossesse, thyroĂŻdectomie.Introduction: emergency physicians frequently encounter patients with thyroid disease. However, it is unusual for these thyroid disorders to create acute, life-threatening situations. Critical airway compression attributable to benign thyroid enlargement may occur suddenly and require urgent treatement.Aim: we recall making procedures in charge of a goiter in pregnant women.Case -report : We report a case of pregnant women who was admitted for compressive goiter with laryngeal dyspnea, which required emergency total thyroidectomy.Conclusion: Urgent thyroidectomy in pregnant women can be performed if we respect the precautions.Keywords: goiter, pregnancy, thyroidectomy

    The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex.

    Get PDF
    The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere

    Outcome reporting in randomised controlled trials and meta-analyses of appendicitis treatments in children: a systematic review

    Get PDF
    Background: Acute appendicitis is the most common surgical emergency in children. Despite this, there is no core outcome set (COS) described for randomised controlled trials (RCTs) in children with appendicitis and hence no consensus regarding outcome selection, definition and reporting. We aimed to identify outcomes currently reported in studies of paediatric appendicitis. / Methods: Using a defined, sensitive search strategy, we identified RCTs and systematic reviews (SRs) of treatment interventions in children with appendicitis. Included studies were all in English and investigated the effect of one or more treatment interventions in children with acute appendicitis or undergoing appendicectomy for presumed acute appendicitis. Studies were reviewed and data extracted by two reviewers. Primary (if defined) and all other outcomes were recorded and assigned to the core areas ‘Death’, ‘Pathophysiological Manifestations’, ‘Life Impact’, ‘Resource Use’ and ‘Adverse Events’, using OMERACT Filter 2.0. / Results: A total of 63 studies met the inclusion criteria reporting outcomes from 51 RCTs and nine SRs. Only 25 RCTs and four SRs defined a primary outcome. A total of 115 unique and different outcomes were identified. RCTs reported a median of nine outcomes each (range 1 to 14). The most frequently reported outcomes were wound infection (43 RCTs, nine SRs), intra-peritoneal abscess (41 RCTs, seven SRs) and length of stay (35 RCTs, six SRs) yet all three were reported in just 25 RCTs and five SRs. Common outcomes had multiple different definitions or were frequently not defined. Although outcomes were reported within all core areas, just one RCT and no SR reported outcomes for all core areas. Outcomes assigned to the ‘Death’ and ‘Life Impact’ core areas were reported least frequently (in six and 15 RCTs respectively). / Conclusions: There is a wide heterogeneity in the selection and definition of outcomes in paediatric appendicitis, and little overlap in outcomes used across studies. A paucity of studies report patient relevant outcomes within the ‘Life Impact’ core area. These factors preclude meaningful evidence synthesis, and pose challenges to designing prospective clinical trials and cohort studies. The development of a COS for paediatric appendicitis is warranted

    Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression

    Get PDF
    Over the past decade, it has become clear that mammalian genomes encode thousands of long non-coding RNAs (lncRNAs), many of which are now implicated in diverse biological processes. Recent work studying the molecular mechanisms of several key examples — including Xist, which orchestrates X chromosome inactivation — has provided new insights into how lncRNAs can control cellular functions by acting in the nucleus. Here we discuss emerging mechanistic insights into how lncRNAs can regulate gene expression by coordinating regulatory proteins, localizing to target loci and shaping three-dimensional (3D) nuclear organization. We explore these principles to highlight biological challenges in gene regulation, in which lncRNAs are well-suited to perform roles that cannot be carried out by DNA elements or protein regulators alone, such as acting as spatial amplifiers of regulatory signals in the nucleus

    Molecular mechanisms and cellular functions of cGAS-STING signalling

    Get PDF
    The cGAS–STING signalling axis, comprising the synthase for the second messenger cyclic GMP–AMP (cGAS) and the cyclic GMP–AMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGAS–STING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGAS–STING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-ÎșB and MAPK as well as STING-mediated induction of autophagy and lysosome- dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquid–liquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGAS–STING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved

    Extreme disorder in an ultrahigh-affinity protein complex

    Full text link
    Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes
    • 

    corecore