34 research outputs found

    Characterization of the plastic behaviour of AA6016-T4 aluminium alloy

    Get PDF
    Abstract. The current trend in the automotive industry consists in decreasing the weight of the car body to reduce the fuel consumption and the air pollution. This can be done by using low-density materials such as the aluminium alloys having good formability. A frequently used aluminium alloy in the manufacturing of the car body components is AA6016-T4. The paper presents a full mechanical characterization of this material with 1 mm thickness. The investigation starts by performing tensile tests on specimens cut at 0 o , 45 o and 90 o from the rolling direction. For each direction, the yield stress and the anisotropy coefficients are determined. The mechanical parameters of the Hollomon hardening law are determined using the experimental data obtained on samples cut along the rolling direction. Besides the uniaxial parameters, the equibiaxial yield stress and the equibiaxial coefficient of anisotropy are determined by performing bulge tests and compression tests, respectively. The yield surface is characterized in the first quadrant not only by the uniaxial and equibiaxial yield stresses but also by the yield stresses associated to the plane strain status. An experimental strategy for determining the plane strain parameters based on bulge tests is described in the paper. The characterization of the AA6016-T4 aluminium alloy ends with the determination of the forming limit diagram. The tests used for determining the limit strains are the punch stretching and hydraulic bulging

    Determination of the yield loci of four sheet materials (AA6111-T4, AC600, DX54D+Z, and H220BD+Z) by using uniaxial tensile and hydraulic bulge tests)

    Get PDF
    In sheet metal forming simulation, a flow curve and a yield criterion are vital requirements for obtaining reliable numerical results. It is more appropriate to determine a flow curve by using biaxial stress condition tests, such as the hydraulic bulge test, than a uniaxial test because hardening proceeds higher strains before necking occurs. In a uniaxial test, higher strains are extrapolated, which might lead to incorrect results. The bulge test, coupled with the digital image correlation (DIC) system, is used to obtain stress–strain data. In the absence of the DIC system, analytical methods are used to estimate hardening. Typically, such models incorporate a correction factor to achieve correlation to experimental data. An example is the Chakrabarty and Alexander method, which uses a correction factor based on the n value. Here, the Chakrabarty and Alexander approach was modified using a correction factor based on normal anisotropy. When compared with DIC data, the modified model was found to be able to better predict the hardening curves for the materials examined in this study. Because a biaxial flow curve is required to compute the biaxial yield stress, which is an essential input to advanced yield functions, the effects of the various approaches used to determine the biaxial stress–strain data on the shape of the BBC2005 yield loci were also investigated. The proposed method can accurately predict the magnitude of the biaxial yield stress, when compared with DIC data, for all materials investigated in this study

    Sheet metal forming processes: constitutive modelling and numerical simulation

    No full text

    Effect of the Constitutive Laws on the Accuracy of Sheet Metal Simulation

    No full text

    Advances in Plastic Anisotropy and Forming Limits in Sheet Metal Forming

    No full text

    Applications of the Gurson’s model in sheet metal forming

    No full text
    Recent advances in the modelling of metals encompass modelling of metals structural inhomogeneity, damage, porosity, twinning/untwining and non-local and second order effects. This presentation is focused on modelling the void growth in ductile fractures. The growth and coalescence of microscopic voids are the main mechanisms in ductile fracture of bulk metallic parts. In sheet metals, ductile fracture is preceded by necking during which existing voids do not have significant growth. However, necking is highly sensitive to plastic flow direction which in turn is sensitive to the presence of voids. Also, under biaxial strain loading, the final fracture in the necking region is still controlled by void growth; hence an accurate fracture prediction is crucial for crash simulations. Finally, in super-plastic sheet forming, void growth and coalescence may precede or accompany necking. Therefore, there is as increasing interest in modelling of voids in the sheet metals. As an application, we show how the predictions of some forming limit curves (FLCs) can be affected by accurate simulation of voids growth

    Evaluation of deep drawing force under different friction conditions

    No full text
    The purpose of this study is to investigate the variation of the required punch load during the deep drawing process under different friction conditions. In this regards, several deep-drawing tests of cylindrical cups were conducted under four friction conditions at the tool–blank interface. The first case was the dry deep-drawing, considered as a reference friction condition, while in the other three cases hydraulic oil, lithium-based grease and animal fat were used as lubricants. For each friction case, three levels of blank holding force were adopted, namely 10, 20 and 25 kN. The finite element simulation of the deep-drawing process was used to generate a set of calibration curves. By overlapping the experimental load-stroke curves on the calibration curves, the friction coefficient was estimated for each friction case

    A note on the MK computational model for predicting the forming limit strains

    No full text

    BBC05 with non-integer exponent and ambiguities in Nakajima yield surface calibration

    No full text
    Reliable sheet metal forming simulations depend on accurate descriptions of real process conditions. These conditions include material behavior, lubrication systems, tool deformations, press dynamics, and more. Research on material models is the most mature area for describing these conditions in a reliable way. Several advanced and flexible models exists. This study focuses on two versions of yield criteria for sheet materials that are assumed to follow the plane stress assumption: the BBC05 model with integer exponent and the BBC05 model with non-integer exponent. The literature has previously described the BBC05 model with integer exponent. This paper elaborates on a modified version with non-integer exponent that offers more flexibility in the mathematical description. Furthermore, it outlines the implementation of this material model and similar yield criteria as user subroutines in finite element software. As mathematical flexibility increases, it enables more physically correct material approximations. However, it also becomes more challenging to calibrate because of ambiguities due to a larger number of mathematical variables. These ambiguities is demonstrated by using a Nakajima test without lubrication during inverse modeling of parameters for the BBC05 model. It shows that it is impossible to accurately identify the physically correct combination of friction coefficient and the yield surface exponent, k, using strain distributions and punch force. It is suggested to use two Nakajima tests in the inverse modeling process where friction can be neglected due to testing conforming to ISO12004-2. One test that corresponds to equi-biaxial strain of the sheet, and one that corresponds to plane strain in the transverse direction of the sheet. By utilizing these samples in the inverse modeling it is possible to separate friction from the exponent k. A non-integer value of k is found to yield the most reliable prediction of strains and forces in the simulations, thereby also demonstrating the need of flexible yield surface models such as BBC05 with non-integer exponent, YLD2000, Vegter and more advanced yield criteria.open accessReduced Lead Time through Advanced Die Structure Analysi
    corecore