12,445 research outputs found
Manipulation of the graphene surface potential by ion irradiation
We show that the work function of exfoliated single layer graphene can be
modified by irradiation with swift (E_{kin}=92 MeV) heavy ions under glancing
angles of incidence. Upon ion impact individual surface tracks are created in
graphene on SiC. Due to the very localized energy deposition characteristic for
ions in this energy range, the surface area which is structurally altered is
limited to ~ 0.01 mum^2 per track. Kelvin probe force microscopy reveals that
those surface tracks consist of electronically modified material and that a few
tracks suffice to shift the surface potential of the whole single layer flake
by ~ 400 meV. Thus, the irradiation turns the initially n-doped graphene into
p-doped graphene with a hole density of 8.5 x 10^{12} holes/cm^2. This doping
effect persists even after heating the irradiated samples to 500{\deg}C.
Therefore, this charge transfer is not due to adsorbates but must instead be
attributed to implanted atoms. The method presented here opens up a new way to
efficiently manipulate the charge carrier concentration of graphene.Comment: 6 pages, 4 figure
Photon number states generated from a continuous-wave light source
Conditional preparation of photon number states from a continuous-wave
nondegenerate optical parametric oscillator is investigated. We derive the
phase space Wigner function for the output state conditioned on photo detection
events that are not necessarily simultaneous, and we maximize its overlap with
the desired photon number state by choosing the optimal temporal output state
mode function. We present a detailed numerical analysis for the case of
two-photon state generation from a parametric oscillator driven with an
arbitrary intensity below threshold, and in the low intensity limit, we present
a formalism that yields the optimal output state mode function and fidelity for
higher photon number states.Comment: 8 pages, 7 figures, v2: shortened versio
Magnetic structures of Mn3-xFexSn2: an experimental and theoretical study
We investigate the magnetic structure of Mn3-xFexSn2 using neutron powder
diffraction experiments and electronic structure calculations. These alloys
crystallize in the orthorhombic Ni3Sn2 type of structure (Pnma) and comprise
two inequivalent sites for the transition metal atoms (4c and 8d) and two Sn
sites (4c and 4c). The neutron data show that the substituting Fe atoms
predominantly occupy the 4c transition metal site and carry a lower magnetic
moment than Mn atoms. Four kinds of magnetic structures are encountered as a
function of temperature and composition: two simple ferromagnetic structures
(with the magnetic moments pointing along the b or c axis) and two canted
ferromagnetic arrangements (with the ferromagnetic component pointing along the
b or c axis). Electronic structure calculations results agree well with the
low-temperature experimental magnetic moments and canting angles throughout the
series. Comparisons between collinear and non-collinear computations show that
the canted state is stabilized by a band mechanism through the opening of a
hybridization gap. Synchrotron powder diffraction experiments on Mn3Sn2 reveal
a weak monoclinic distortion at low temperature (90.08 deg at 175 K). This
lowering of symmetry could explain the stabilization of the c-axis canted
ferromagnetic structure, which mixes two orthorhombic magnetic space groups, a
circumstance that would otherwise require unusually large high-order terms in
the spin Hamiltonian.Comment: 11 pages, 13 figure
Detecting swift heavy ion irradiation effects with graphene
In this paper we show how single layer graphene can be utilized to study
swift heavy ion (SHI) modifications on various substrates. The samples were
prepared by mechanical exfoliation of bulk graphite onto SrTiO, NaCl and
Si(111), respectively. SHI irradiations were performed under glancing angles of
incidence and the samples were analysed by means of atomic force microscopy in
ambient conditions. We show that graphene can be used to check whether the
irradiation was successful or not, to determine the nominal ion fluence and to
locally mark SHI impacts. In case of samples prepared in situ, graphene is
shown to be able to catch material which would otherwise escape from the
surface.Comment: 10 pages, 3 figure
Damage in graphene due to electronic excitation induced by highly charged ions
Graphene is expected to be rather insensitive to ionizing particle radiation.
We demonstrate that single layers of exfoliated graphene sustain significant
damage from irradiation with slow highly charged ions. We have investigated the
ion induced changes of graphene after irradiation with highly charged ions of
different charge states (q = 28-42) and kinetic energies E_kin = 150-450 keV.
Atomic force microscopy images reveal that the ion induced defects are not
topographic in nature but are related to a significant change in friction. To
create these defects, a minimum charge state is needed. In addition to this
threshold behaviour, the required minimum charge state as well as the defect
diameter show a strong dependency on the kinetic energy of the projectiles.
From the linear dependency of the defect diameter on the projectile velocity we
infer that electronic excitations triggered by the incoming ion in the
above-surface phase play a dominant role for this unexpected defect creation in
graphene
Conditional generation of sub-Poissonian light from two-mode squeezed vacuum via balanced homodyne detection on idler mode
A simple scheme for conditional generation of nonclassical light with
sub-Poissonian photon-number statistics is proposed. The method utilizes
entanglement of signal and idler modes in two-mode squeezed vacuum state
generated in optical parametric amplifier. A quadrature component of the idler
mode is measured in balanced homodyne detector and only those experimental runs
where the absolute value of the measured quadrature is higher than certain
threshold are accepted. If the threshold is large enough then the conditional
output state of signal mode exhibits reduction of photon-number fluctuations
below the coherent-state level.Comment: 7 pages, 6 figures, REVTe
A Press for Electric Resistivity Measurements of Powders
In research work on semiconductors, the electric resistivity measurements are very important. In most cases it is impossible to obtain a compact sample and the measurements have to be done on the powdered material. For this purpose the resistivity is measured on a sample which is obtained by pressing the powder to a definite pressure between two electrodes
- …